作为司机的助手,红绿灯检测系统使用神经对联性网络

Akhmad Hendriawan, Muhammad Iqbal Millyniawan Pradana, Ronny Susetyoko
{"title":"作为司机的助手,红绿灯检测系统使用神经对联性网络","authors":"Akhmad Hendriawan, Muhammad Iqbal Millyniawan Pradana, Ronny Susetyoko","doi":"10.35314/isi.v8i1.3155","DOIUrl":null,"url":null,"abstract":"Abstrack - Accident cases in Indonesia are increasing along with the increase in the number of motorized vehicles. From 2016 to 2017, speed limit violations increased by 96.20% and violations of road markings or signs also increased by 5.54%. Intelligent transportation system is one solution to reduce the number of accidents. Currently Driver Assistance Systems (DAS) are being developed in the automotive world. The purpose of this research is to design a watershed based on three input parameters for determining recommended actions, namely: 1) distance to the vehicle behind; 2) vehicle speed; and 3) traffic light status with recommendation action using fuzzy rule base. Lidar sensor for distance detection and GPS for monitoring vehicle speed. The YOLOv4 Algorithm method is used to detect traffic lights. The results of this study, the accuracy of sign color recognition is 92.831% with a detection speed of up to 8.94 FPS. The most stable reading distance is between 1 – 8-meters with a light intensity of 10 – 3200 lux and a tilt angle of up to 90 degrees. There is a drop in processing speed of up to 1.5 FPS during system integration. This DAS is effective enough to be applied to two-wheeled and four-wheeled motorized vehicles.","PeriodicalId":354905,"journal":{"name":"INOVTEK Polbeng - Seri Informatika","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sistem Deteksi Lampu Lalu Lintas Sebagai Asisten Pengemudi Menggunakan Convolutional Neural Network\",\"authors\":\"Akhmad Hendriawan, Muhammad Iqbal Millyniawan Pradana, Ronny Susetyoko\",\"doi\":\"10.35314/isi.v8i1.3155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstrack - Accident cases in Indonesia are increasing along with the increase in the number of motorized vehicles. From 2016 to 2017, speed limit violations increased by 96.20% and violations of road markings or signs also increased by 5.54%. Intelligent transportation system is one solution to reduce the number of accidents. Currently Driver Assistance Systems (DAS) are being developed in the automotive world. The purpose of this research is to design a watershed based on three input parameters for determining recommended actions, namely: 1) distance to the vehicle behind; 2) vehicle speed; and 3) traffic light status with recommendation action using fuzzy rule base. Lidar sensor for distance detection and GPS for monitoring vehicle speed. The YOLOv4 Algorithm method is used to detect traffic lights. The results of this study, the accuracy of sign color recognition is 92.831% with a detection speed of up to 8.94 FPS. The most stable reading distance is between 1 – 8-meters with a light intensity of 10 – 3200 lux and a tilt angle of up to 90 degrees. There is a drop in processing speed of up to 1.5 FPS during system integration. This DAS is effective enough to be applied to two-wheeled and four-wheeled motorized vehicles.\",\"PeriodicalId\":354905,\"journal\":{\"name\":\"INOVTEK Polbeng - Seri Informatika\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INOVTEK Polbeng - Seri Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35314/isi.v8i1.3155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INOVTEK Polbeng - Seri Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35314/isi.v8i1.3155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:印度尼西亚的事故案件随着机动车数量的增加而增加。从2016年到2017年,违反限速规定的行为增加了96.20%,违反道路标志或标志的行为也增加了5.54%。智能交通系统是减少交通事故数量的一种解决方案。目前,驾驶辅助系统(DAS)正在汽车领域得到开发。本研究的目的是设计一个基于三个输入参数的分水岭,以确定建议的行动,即:1)与后面车辆的距离;2)车速;3)基于模糊规则库的红绿灯状态推荐动作。激光雷达传感器用于距离探测,GPS用于监测车辆速度。采用YOLOv4算法方法检测红绿灯。本研究结果表明,标志颜色识别准确率为92.831%,检测速度高达8.94 FPS。最稳定的读取距离在1 - 8米之间,光强为10 - 3200勒克斯,倾斜角度可达90度。在系统集成期间,处理速度下降了1.5 FPS。该DAS的有效性足以适用于两轮和四轮机动车辆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sistem Deteksi Lampu Lalu Lintas Sebagai Asisten Pengemudi Menggunakan Convolutional Neural Network
Abstrack - Accident cases in Indonesia are increasing along with the increase in the number of motorized vehicles. From 2016 to 2017, speed limit violations increased by 96.20% and violations of road markings or signs also increased by 5.54%. Intelligent transportation system is one solution to reduce the number of accidents. Currently Driver Assistance Systems (DAS) are being developed in the automotive world. The purpose of this research is to design a watershed based on three input parameters for determining recommended actions, namely: 1) distance to the vehicle behind; 2) vehicle speed; and 3) traffic light status with recommendation action using fuzzy rule base. Lidar sensor for distance detection and GPS for monitoring vehicle speed. The YOLOv4 Algorithm method is used to detect traffic lights. The results of this study, the accuracy of sign color recognition is 92.831% with a detection speed of up to 8.94 FPS. The most stable reading distance is between 1 – 8-meters with a light intensity of 10 – 3200 lux and a tilt angle of up to 90 degrees. There is a drop in processing speed of up to 1.5 FPS during system integration. This DAS is effective enough to be applied to two-wheeled and four-wheeled motorized vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sistem Monitoring Suhu Dan Kelembaban Pada Mesin Pembiakan Telur Jangkrik Berbasis IoT Systematic Literature Review: Perbandingan Algoritma Klasifikasi Pengembangan Media Interaktif Berbasis Augmented Reality untuk Melatih Kemampuan Critical Thinking Perencanaan Arsitektur Enterprise Menggunakan Framework TOGAF (The Open Group Architecture Framework) Implementasi Internet Of Things Pada Protokol MQTT Dan HTTP Dalam Sistem Pendeteksi Banjir
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1