基于谐波函数的基于传感器的机器人路径规划

M. Kazemi, M. Mehrandezh, K. Gupta
{"title":"基于谐波函数的基于传感器的机器人路径规划","authors":"M. Kazemi, M. Mehrandezh, K. Gupta","doi":"10.1109/ICAR.2005.1507395","DOIUrl":null,"url":null,"abstract":"We present a new sensor-based robot motion planning framework for mobile robot navigation in unknown environments. The main idea of the proposed planning approach, inspired by our recent works on using harmonic function-based probabilistic roadmaps (HFPRM) for robotic navigation in known environments (model-based cases) (Kazemi et al., 2004, 2005), is to utilize a fluid dynamic (FD) paradigm based on potential flows to identify and prioritize critical regions, i.e. narrow passages and hard-to-navigate regions, at the scan planning stage of a sensor-based probabilistic roadmap (PRM). The PRM, which efficiently captures the connectivity of the free space, is incrementally expanded as the robot senses the physical workspace. Computer simulations and experimental results obtained using a mobile robot equipped with ultrasonic range finders are presented","PeriodicalId":428475,"journal":{"name":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Sensor-based robot path planning using harmonic function-based probabilistic roadmaps\",\"authors\":\"M. Kazemi, M. Mehrandezh, K. Gupta\",\"doi\":\"10.1109/ICAR.2005.1507395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new sensor-based robot motion planning framework for mobile robot navigation in unknown environments. The main idea of the proposed planning approach, inspired by our recent works on using harmonic function-based probabilistic roadmaps (HFPRM) for robotic navigation in known environments (model-based cases) (Kazemi et al., 2004, 2005), is to utilize a fluid dynamic (FD) paradigm based on potential flows to identify and prioritize critical regions, i.e. narrow passages and hard-to-navigate regions, at the scan planning stage of a sensor-based probabilistic roadmap (PRM). The PRM, which efficiently captures the connectivity of the free space, is incrementally expanded as the robot senses the physical workspace. Computer simulations and experimental results obtained using a mobile robot equipped with ultrasonic range finders are presented\",\"PeriodicalId\":428475,\"journal\":{\"name\":\"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2005.1507395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2005.1507395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

针对未知环境下的移动机器人导航问题,提出了一种新的基于传感器的机器人运动规划框架。所提出的规划方法的主要思想,受到我们最近在已知环境(基于模型的情况)中使用基于谐波函数的概率路线图(HFPRM)进行机器人导航的工作的启发(Kazemi等人,2004,2005),是在基于传感器的概率路线图(PRM)的扫描规划阶段利用基于潜在流的流体动力学(FD)范式来识别和优先考虑关键区域,即狭窄的通道和难以导航的区域。PRM有效地捕捉自由空间的连通性,随着机器人感知物理工作空间而逐渐扩展。给出了安装超声测距仪的移动机器人的计算机仿真和实验结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensor-based robot path planning using harmonic function-based probabilistic roadmaps
We present a new sensor-based robot motion planning framework for mobile robot navigation in unknown environments. The main idea of the proposed planning approach, inspired by our recent works on using harmonic function-based probabilistic roadmaps (HFPRM) for robotic navigation in known environments (model-based cases) (Kazemi et al., 2004, 2005), is to utilize a fluid dynamic (FD) paradigm based on potential flows to identify and prioritize critical regions, i.e. narrow passages and hard-to-navigate regions, at the scan planning stage of a sensor-based probabilistic roadmap (PRM). The PRM, which efficiently captures the connectivity of the free space, is incrementally expanded as the robot senses the physical workspace. Computer simulations and experimental results obtained using a mobile robot equipped with ultrasonic range finders are presented
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Manipulator robotics in use for decommissioning of A-1 nuclear power plant An approach to modelling collaborative teleoperation Intestinal locomotion by means of mucoadhesive films Kalman filters comparison for vehicle localization data alignment An omnidirectional vehicle on a basketball
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1