提高组合电路功率估计中支持集查找方法的精度

Hoon Choi, S. Hwang
{"title":"提高组合电路功率估计中支持集查找方法的精度","authors":"Hoon Choi, S. Hwang","doi":"10.1109/EDTC.1997.582411","DOIUrl":null,"url":null,"abstract":"We address a way to improve the accuracy of support-set finding method for a probability-based power estimation of combinational circuits. Support-set finding methods to build local BDDs have been proposed to handle large circuits. However because they consider only the shallow reconvergence, they are not accurate enough to be used in the power optimization. To solve this problem, we propose a new algorithm, Feather algorithm, which can efficiently detect minimal support-set with 100% reconvergent node detection rate. The experimental results show that the average error of our proposed method is 0.1% for the total power and 1.6% for the node-specific power.","PeriodicalId":297301,"journal":{"name":"Proceedings European Design and Test Conference. ED & TC 97","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improving the accuracy of support-set finding method for power estimation of combinational circuits\",\"authors\":\"Hoon Choi, S. Hwang\",\"doi\":\"10.1109/EDTC.1997.582411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address a way to improve the accuracy of support-set finding method for a probability-based power estimation of combinational circuits. Support-set finding methods to build local BDDs have been proposed to handle large circuits. However because they consider only the shallow reconvergence, they are not accurate enough to be used in the power optimization. To solve this problem, we propose a new algorithm, Feather algorithm, which can efficiently detect minimal support-set with 100% reconvergent node detection rate. The experimental results show that the average error of our proposed method is 0.1% for the total power and 1.6% for the node-specific power.\",\"PeriodicalId\":297301,\"journal\":{\"name\":\"Proceedings European Design and Test Conference. ED & TC 97\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings European Design and Test Conference. ED & TC 97\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDTC.1997.582411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings European Design and Test Conference. ED & TC 97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTC.1997.582411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种提高基于概率的组合电路功率估计的支持集查找方法的准确性的方法。为了处理大型电路,已经提出了构建本地bdd的支持集查找方法。然而,由于它们只考虑了浅层再收敛,因此精度不够,无法用于功率优化。为了解决这一问题,我们提出了一种新的算法——羽毛算法,该算法能够以100%的再收敛节点检测率高效地检测最小支持集。实验结果表明,该方法对总功率的平均误差为0.1%,对节点特定功率的平均误差为1.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the accuracy of support-set finding method for power estimation of combinational circuits
We address a way to improve the accuracy of support-set finding method for a probability-based power estimation of combinational circuits. Support-set finding methods to build local BDDs have been proposed to handle large circuits. However because they consider only the shallow reconvergence, they are not accurate enough to be used in the power optimization. To solve this problem, we propose a new algorithm, Feather algorithm, which can efficiently detect minimal support-set with 100% reconvergent node detection rate. The experimental results show that the average error of our proposed method is 0.1% for the total power and 1.6% for the node-specific power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A real-time smart sensor system for visual motion estimation A gridless multi-layer router for standard cell circuits using CTM cells Design and implementation of a coprocessor for cryptography applications Compact structural test generation for analog macros Multi-layer chip-level global routing using an efficient graph-based Steiner tree heuristic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1