基于粒子群前馈神经网络的锂离子电池老化估计

N. Junhuathon, Guntinan Sakunphaisal, K. Chayakulkheeree
{"title":"基于粒子群前馈神经网络的锂离子电池老化估计","authors":"N. Junhuathon, Guntinan Sakunphaisal, K. Chayakulkheeree","doi":"10.1109/ICPEI49860.2020.9431432","DOIUrl":null,"url":null,"abstract":"Battery Management System (BMS) is a critical component in modern electrical technology. The exact knowledge of the state of health and capacity impact is useful for the estimation and control strategy of battery. Therefore, this paper proposed the particle swarm optimization-based Feedforward Neural Network (PSO-FNN) for Battery Aging Estimate (BAE). This PSO is used to optimize the weights and biases of the FNN. For validating the proposed method, conventional FNN was simulated with battery data sets provided by NASA Prognostics Center of Excellence (PCoE) and compared to the proposed method. The simulation results show the performance of PSO-FNN is noticeably better in relatively volatile systems.","PeriodicalId":342582,"journal":{"name":"2020 International Conference on Power, Energy and Innovations (ICPEI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Li-ion Battery Aging Estimation Using Particle Swarm Optimization Based Feedforward Neural Network\",\"authors\":\"N. Junhuathon, Guntinan Sakunphaisal, K. Chayakulkheeree\",\"doi\":\"10.1109/ICPEI49860.2020.9431432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Battery Management System (BMS) is a critical component in modern electrical technology. The exact knowledge of the state of health and capacity impact is useful for the estimation and control strategy of battery. Therefore, this paper proposed the particle swarm optimization-based Feedforward Neural Network (PSO-FNN) for Battery Aging Estimate (BAE). This PSO is used to optimize the weights and biases of the FNN. For validating the proposed method, conventional FNN was simulated with battery data sets provided by NASA Prognostics Center of Excellence (PCoE) and compared to the proposed method. The simulation results show the performance of PSO-FNN is noticeably better in relatively volatile systems.\",\"PeriodicalId\":342582,\"journal\":{\"name\":\"2020 International Conference on Power, Energy and Innovations (ICPEI)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Power, Energy and Innovations (ICPEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPEI49860.2020.9431432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Power, Energy and Innovations (ICPEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEI49860.2020.9431432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电池管理系统(BMS)是现代电气技术的重要组成部分。准确了解电池的健康状态和容量影响对电池的估计和控制策略有重要意义。为此,本文提出了基于粒子群优化的前馈神经网络(PSO-FNN)用于电池老化估计。该粒子群用于优化模糊神经网络的权重和偏置。为了验证提出的方法,用NASA卓越预测中心(PCoE)提供的电池数据集模拟了传统的FNN,并与提出的方法进行了比较。仿真结果表明,PSO-FNN在相对易变的系统中具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Li-ion Battery Aging Estimation Using Particle Swarm Optimization Based Feedforward Neural Network
Battery Management System (BMS) is a critical component in modern electrical technology. The exact knowledge of the state of health and capacity impact is useful for the estimation and control strategy of battery. Therefore, this paper proposed the particle swarm optimization-based Feedforward Neural Network (PSO-FNN) for Battery Aging Estimate (BAE). This PSO is used to optimize the weights and biases of the FNN. For validating the proposed method, conventional FNN was simulated with battery data sets provided by NASA Prognostics Center of Excellence (PCoE) and compared to the proposed method. The simulation results show the performance of PSO-FNN is noticeably better in relatively volatile systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis and Design of Wireless Charging Lane for Light Rail Transit Tie-Line Constrained Multi-Area Generation Scheduling Using Mixed Integer Programming Part I: Problem Formulation Intelligent Machine Learning Techniques for Condition Assessment of Power Transformers Energy Consumption Study of Rapid Charging of Catenary Free Light Rail Transit A Dual Band Split Ring Electromagnetic Band Gap using Interdigital Technique and its Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1