P. Dimitrakopoulos, Giorgos Sfikas, Christophoros Nikou
{"title":"残差注意力特征金字塔网络的核检测","authors":"P. Dimitrakopoulos, Giorgos Sfikas, Christophoros Nikou","doi":"10.1109/BIBE.2019.00028","DOIUrl":null,"url":null,"abstract":"Detection of cell nuclei in microscopy images is a challenging research topic due to limitations in acquired image quality as well as due to the diversity of nuclear morphology. This has been a topic of enduring interest with promising success shown by deep learning methods. Recently, attention gating methods have been proposed and employed successfully in a diverse array of pattern recognition tasks. In this work, we introduce a novel attention module and integrate it with feature pyramid networks and the state-of-the-art Mask R-CNN network. We show with numerical experiments that the proposed model outperforms the state-of-the-art baseline.","PeriodicalId":318819,"journal":{"name":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nuclei Detection Using Residual Attention Feature Pyramid Networks\",\"authors\":\"P. Dimitrakopoulos, Giorgos Sfikas, Christophoros Nikou\",\"doi\":\"10.1109/BIBE.2019.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of cell nuclei in microscopy images is a challenging research topic due to limitations in acquired image quality as well as due to the diversity of nuclear morphology. This has been a topic of enduring interest with promising success shown by deep learning methods. Recently, attention gating methods have been proposed and employed successfully in a diverse array of pattern recognition tasks. In this work, we introduce a novel attention module and integrate it with feature pyramid networks and the state-of-the-art Mask R-CNN network. We show with numerical experiments that the proposed model outperforms the state-of-the-art baseline.\",\"PeriodicalId\":318819,\"journal\":{\"name\":\"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2019.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2019.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nuclei Detection Using Residual Attention Feature Pyramid Networks
Detection of cell nuclei in microscopy images is a challenging research topic due to limitations in acquired image quality as well as due to the diversity of nuclear morphology. This has been a topic of enduring interest with promising success shown by deep learning methods. Recently, attention gating methods have been proposed and employed successfully in a diverse array of pattern recognition tasks. In this work, we introduce a novel attention module and integrate it with feature pyramid networks and the state-of-the-art Mask R-CNN network. We show with numerical experiments that the proposed model outperforms the state-of-the-art baseline.