基于NGSIM轨迹数据集的MITSIM和IDM跟车模型标定

Chenyi Chen, Li Li, Jianming Hu, Chenyao Geng
{"title":"基于NGSIM轨迹数据集的MITSIM和IDM跟车模型标定","authors":"Chenyi Chen, Li Li, Jianming Hu, Chenyao Geng","doi":"10.1109/ICVES.2010.5550943","DOIUrl":null,"url":null,"abstract":"This paper studies the car-following behaviors of individual drivers in real traffic scenes using the trajectory datasets provided by Next Generation SIMulation (NGSIM) program. We calibrate Intelligent Driver Model (IDM) and MIcroscopic Traffic SIMulator (MITSIM) car-following models by using Genetic Algorithm (GA), with a special emphasize on MITSIM model, because there are already some nice works on the calibration of IDM model. We find that after calibration, the tracking gap errors of both models are normally below 30%. We also find that the parameter set (α<sup>+</sup>, β<sup>+</sup>, γ<sup>+</sup>, α<sup>−</sup>, β<sup>−</sup>, γ<sup>−</sup>) of MITSIM model obtained from different sampling trajectories roughly locate in a low-dimensional hyperplane rather than randomly distribute in the entire parameter space.","PeriodicalId":416036,"journal":{"name":"Proceedings of 2010 IEEE International Conference on Vehicular Electronics and Safety","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Calibration of MITSIM and IDM car-following model based on NGSIM trajectory datasets\",\"authors\":\"Chenyi Chen, Li Li, Jianming Hu, Chenyao Geng\",\"doi\":\"10.1109/ICVES.2010.5550943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the car-following behaviors of individual drivers in real traffic scenes using the trajectory datasets provided by Next Generation SIMulation (NGSIM) program. We calibrate Intelligent Driver Model (IDM) and MIcroscopic Traffic SIMulator (MITSIM) car-following models by using Genetic Algorithm (GA), with a special emphasize on MITSIM model, because there are already some nice works on the calibration of IDM model. We find that after calibration, the tracking gap errors of both models are normally below 30%. We also find that the parameter set (α<sup>+</sup>, β<sup>+</sup>, γ<sup>+</sup>, α<sup>−</sup>, β<sup>−</sup>, γ<sup>−</sup>) of MITSIM model obtained from different sampling trajectories roughly locate in a low-dimensional hyperplane rather than randomly distribute in the entire parameter space.\",\"PeriodicalId\":416036,\"journal\":{\"name\":\"Proceedings of 2010 IEEE International Conference on Vehicular Electronics and Safety\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2010 IEEE International Conference on Vehicular Electronics and Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVES.2010.5550943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2010 IEEE International Conference on Vehicular Electronics and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2010.5550943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

本文利用NGSIM (Next Generation SIMulation)程序提供的轨迹数据集,对真实交通场景中个体驾驶员的跟车行为进行了研究。本文利用遗传算法对智能驾驶员模型(IDM)和微观交通模拟器(MITSIM)的跟车模型进行了标定,其中重点对MITSIM模型进行了标定,因为在IDM模型标定方面已经取得了一些不错的成果。我们发现,校正后,两种模型的跟踪间隙误差通常都在30%以下。我们还发现从不同采样轨迹得到的MITSIM模型的参数集(α+, β+, γ+, α−,β−,γ−)大致分布在一个低维超平面上,而不是随机分布在整个参数空间中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calibration of MITSIM and IDM car-following model based on NGSIM trajectory datasets
This paper studies the car-following behaviors of individual drivers in real traffic scenes using the trajectory datasets provided by Next Generation SIMulation (NGSIM) program. We calibrate Intelligent Driver Model (IDM) and MIcroscopic Traffic SIMulator (MITSIM) car-following models by using Genetic Algorithm (GA), with a special emphasize on MITSIM model, because there are already some nice works on the calibration of IDM model. We find that after calibration, the tracking gap errors of both models are normally below 30%. We also find that the parameter set (α+, β+, γ+, α, β, γ) of MITSIM model obtained from different sampling trajectories roughly locate in a low-dimensional hyperplane rather than randomly distribute in the entire parameter space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The anti-skidding control for hybrid-braking system Take a picture of your tire! Research on design method regarding pedestrian head protection Event sequence reconstruction in automated guided vehicle systems Intelligent system of construction machinery based on μC/OS-II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1