具有有效重要抽样的伪边际哈密顿蒙特卡罗

Kjartan Kloster Osmundsen, T. S. Kleppe, R. Liesenfeld
{"title":"具有有效重要抽样的伪边际哈密顿蒙特卡罗","authors":"Kjartan Kloster Osmundsen, T. S. Kleppe, R. Liesenfeld","doi":"10.2139/ssrn.3304077","DOIUrl":null,"url":null,"abstract":"The joint posterior of latent variables and parameters in Bayesian hierarchical models often has a strong nonlinear dependence structure, thus making it a challenging target for standard Markov-chain Monte-Carlo methods. Pseudo-marginal methods aim at effectively exploring such target distributions, by marginalizing the latent variables using Monte-Carlo integration and directly targeting the marginal posterior of the parameters. We follow this approach and propose a generic pseudo-marginal algorithm for efficiently simulating from the posterior of the parameters. It combines efficient importance sampling, for accurately marginalizing the latent variables, with the recently developed pseudo-marginal Hamiltonian Monte Carlo approach. We illustrate our algorithm in applications to dynamic state space models, where it shows a very high simulation efficiency even in challenging scenarios with complex dependence structures.","PeriodicalId":275253,"journal":{"name":"Operations Research eJournal","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pseudo-Marginal Hamiltonian Monte Carlo with Efficient Importance Sampling\",\"authors\":\"Kjartan Kloster Osmundsen, T. S. Kleppe, R. Liesenfeld\",\"doi\":\"10.2139/ssrn.3304077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The joint posterior of latent variables and parameters in Bayesian hierarchical models often has a strong nonlinear dependence structure, thus making it a challenging target for standard Markov-chain Monte-Carlo methods. Pseudo-marginal methods aim at effectively exploring such target distributions, by marginalizing the latent variables using Monte-Carlo integration and directly targeting the marginal posterior of the parameters. We follow this approach and propose a generic pseudo-marginal algorithm for efficiently simulating from the posterior of the parameters. It combines efficient importance sampling, for accurately marginalizing the latent variables, with the recently developed pseudo-marginal Hamiltonian Monte Carlo approach. We illustrate our algorithm in applications to dynamic state space models, where it shows a very high simulation efficiency even in challenging scenarios with complex dependence structures.\",\"PeriodicalId\":275253,\"journal\":{\"name\":\"Operations Research eJournal\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3304077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3304077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

贝叶斯层次模型中潜变量和参数的联合后验往往具有很强的非线性依赖结构,这使得它成为标准马尔可夫链蒙特卡罗方法的一个挑战目标。伪边际方法通过蒙特卡罗积分对潜在变量进行边际化,直接针对参数的边际后验,从而有效地探索这些目标分布。我们遵循这种方法,并提出了一种通用的伪边缘算法,用于有效地从参数的后验进行模拟。它结合了有效的重要性抽样,以准确地边缘化潜在变量,与最近发展的伪边际哈密顿蒙特卡罗方法。我们在动态状态空间模型的应用中说明了我们的算法,即使在具有复杂依赖结构的具有挑战性的场景中,它也显示出非常高的仿真效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pseudo-Marginal Hamiltonian Monte Carlo with Efficient Importance Sampling
The joint posterior of latent variables and parameters in Bayesian hierarchical models often has a strong nonlinear dependence structure, thus making it a challenging target for standard Markov-chain Monte-Carlo methods. Pseudo-marginal methods aim at effectively exploring such target distributions, by marginalizing the latent variables using Monte-Carlo integration and directly targeting the marginal posterior of the parameters. We follow this approach and propose a generic pseudo-marginal algorithm for efficiently simulating from the posterior of the parameters. It combines efficient importance sampling, for accurately marginalizing the latent variables, with the recently developed pseudo-marginal Hamiltonian Monte Carlo approach. We illustrate our algorithm in applications to dynamic state space models, where it shows a very high simulation efficiency even in challenging scenarios with complex dependence structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Performance of Certainty-equivalent Pricing Optimal Policies for a Multi-Echelon Inventory Problem with Service Time Target and Expediting Robust Epidemiological Prediction and Optimization Strategic Alliances and Lending Relationships Role of Production Efficiency: Inventory Leanness and Financial Outcome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1