HPDV:用于虚拟机映像的高度并行重复数据删除集群

Chuan Lin, Q. Cao, Jianzhong Huang, Jie Yao, Xiaoqian Li, C. Xie
{"title":"HPDV:用于虚拟机映像的高度并行重复数据删除集群","authors":"Chuan Lin, Q. Cao, Jianzhong Huang, Jie Yao, Xiaoqian Li, C. Xie","doi":"10.1109/CCGRID.2018.00074","DOIUrl":null,"url":null,"abstract":"Data deduplication has been widely introduced to effectively reduce storage requirement of virtual machine (VM) images running on VM servers in the virtualized cloud platforms. Nevertheless, the existing state-of-the-art deduplication for VM images approaches can not sufficiently exploit the potential of underlying hardware with consideration of the interference of deduplication on the foreground VM services, which could affect the quality of VM services. In this paper, we present HPDV, a highly parallel deduplication cluster for VM images, which well utilizes the parallelism to achieve high throughput with minimum interference on the foreground VM services. The main idea behind HPDV is to exploit idle CPU resource of VM servers to parallelize the compute-intensive chunking and fingerprinting, and to parallelize the I/O-intensive fingerprint indexing in the deduplication servers by dividing the globally shared fingerprint index into multiple independent sub-indexes according to the operating systems of VM images. To ensure the quality of VM services, a resource-aware scheduler is proposed to dynamically adjust the number of parallel chunking and fingerprinting threads according to the CPU utilization of VM servers. Our evaluation results demonstrate that compared to a state-of-the-art deduplication system for VM images called Light, HPDV achieves up to 67% deduplication throughput improvement.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"HPDV:A Highly Parallel Deduplication Cluster for Virtual Machine Images\",\"authors\":\"Chuan Lin, Q. Cao, Jianzhong Huang, Jie Yao, Xiaoqian Li, C. Xie\",\"doi\":\"10.1109/CCGRID.2018.00074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data deduplication has been widely introduced to effectively reduce storage requirement of virtual machine (VM) images running on VM servers in the virtualized cloud platforms. Nevertheless, the existing state-of-the-art deduplication for VM images approaches can not sufficiently exploit the potential of underlying hardware with consideration of the interference of deduplication on the foreground VM services, which could affect the quality of VM services. In this paper, we present HPDV, a highly parallel deduplication cluster for VM images, which well utilizes the parallelism to achieve high throughput with minimum interference on the foreground VM services. The main idea behind HPDV is to exploit idle CPU resource of VM servers to parallelize the compute-intensive chunking and fingerprinting, and to parallelize the I/O-intensive fingerprint indexing in the deduplication servers by dividing the globally shared fingerprint index into multiple independent sub-indexes according to the operating systems of VM images. To ensure the quality of VM services, a resource-aware scheduler is proposed to dynamically adjust the number of parallel chunking and fingerprinting threads according to the CPU utilization of VM servers. Our evaluation results demonstrate that compared to a state-of-the-art deduplication system for VM images called Light, HPDV achieves up to 67% deduplication throughput improvement.\",\"PeriodicalId\":321027,\"journal\":{\"name\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2018.00074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

为了有效降低虚拟化云平台中运行在虚拟机服务器上的虚拟机映像的存储需求,重复数据删除技术被广泛引入。然而,现有的最先进的虚拟机镜像重复数据删除方法不能充分利用底层硬件的潜力,考虑到重复数据删除对前台虚拟机服务的干扰,这可能会影响虚拟机服务的质量。在本文中,我们提出了一个高度并行的VM镜像重复数据删除集群HPDV,它很好地利用了并行性来实现高吞吐量,同时对前台VM服务的干扰最小。HPDV的主要思想是利用虚拟机服务器的空闲CPU资源来并行化计算密集型的分块和指纹,并根据虚拟机映像的操作系统将全局共享的指纹索引划分为多个独立的子索引,从而并行化重复数据删除服务器上的I/ o密集型指纹索引。为了保证虚拟机的服务质量,提出了一种资源感知调度器,根据虚拟机服务器的CPU利用率动态调整并行分块和指纹线程的数量。我们的评估结果表明,与最先进的用于VM映像的重复数据删除系统Light相比,HPDV实现了高达67%的重复数据删除吞吐量改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HPDV:A Highly Parallel Deduplication Cluster for Virtual Machine Images
Data deduplication has been widely introduced to effectively reduce storage requirement of virtual machine (VM) images running on VM servers in the virtualized cloud platforms. Nevertheless, the existing state-of-the-art deduplication for VM images approaches can not sufficiently exploit the potential of underlying hardware with consideration of the interference of deduplication on the foreground VM services, which could affect the quality of VM services. In this paper, we present HPDV, a highly parallel deduplication cluster for VM images, which well utilizes the parallelism to achieve high throughput with minimum interference on the foreground VM services. The main idea behind HPDV is to exploit idle CPU resource of VM servers to parallelize the compute-intensive chunking and fingerprinting, and to parallelize the I/O-intensive fingerprint indexing in the deduplication servers by dividing the globally shared fingerprint index into multiple independent sub-indexes according to the operating systems of VM images. To ensure the quality of VM services, a resource-aware scheduler is proposed to dynamically adjust the number of parallel chunking and fingerprinting threads according to the CPU utilization of VM servers. Our evaluation results demonstrate that compared to a state-of-the-art deduplication system for VM images called Light, HPDV achieves up to 67% deduplication throughput improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1