GSLPI:基于成本的查询进度指示器

Jiexing Li, Rimma V. Nehme, J. Naughton
{"title":"GSLPI:基于成本的查询进度指示器","authors":"Jiexing Li, Rimma V. Nehme, J. Naughton","doi":"10.1109/ICDE.2012.74","DOIUrl":null,"url":null,"abstract":"Progress indicators for SQL queries were first published in 2004 with the simultaneous and independent proposals from Chaudhuri et al. and Luo et al. In this paper, we implement both progress indicators in the same commercial RDBMS to investigate their performance. We summarize common cases in which they are both accurate and cases in which they fail to provide reliable estimates. Although there are differences in their performance, much more striking is the similarity in the errors they make due to a common simplifying uniform future speed assumption. While the developers of these progress indicators were aware that this assumption could cause errors, they neither explored how large the errors might be nor did they investigate the feasibility of removing the assumption. To rectify this we propose a new query progress indicator, similar to these early progress indicators but without the uniform speed assumption. Experiments show that on the TPC-H benchmark, on queries for which the original progress indicators have errors up to 30X the query running time, the new progress indicator is accurate to within 10 percent. We also discuss the sources of the errors that still remain and shed some light on what would need to be done to eliminate them.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"GSLPI: A Cost-Based Query Progress Indicator\",\"authors\":\"Jiexing Li, Rimma V. Nehme, J. Naughton\",\"doi\":\"10.1109/ICDE.2012.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Progress indicators for SQL queries were first published in 2004 with the simultaneous and independent proposals from Chaudhuri et al. and Luo et al. In this paper, we implement both progress indicators in the same commercial RDBMS to investigate their performance. We summarize common cases in which they are both accurate and cases in which they fail to provide reliable estimates. Although there are differences in their performance, much more striking is the similarity in the errors they make due to a common simplifying uniform future speed assumption. While the developers of these progress indicators were aware that this assumption could cause errors, they neither explored how large the errors might be nor did they investigate the feasibility of removing the assumption. To rectify this we propose a new query progress indicator, similar to these early progress indicators but without the uniform speed assumption. Experiments show that on the TPC-H benchmark, on queries for which the original progress indicators have errors up to 30X the query running time, the new progress indicator is accurate to within 10 percent. We also discuss the sources of the errors that still remain and shed some light on what would need to be done to eliminate them.\",\"PeriodicalId\":321608,\"journal\":{\"name\":\"2012 IEEE 28th International Conference on Data Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 28th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2012.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

SQL查询的进度指标首次发布于2004年,Chaudhuri等人和Luo等人同时提出了独立的建议。在本文中,我们在同一个商业RDBMS中实现了这两个进度指标,以研究它们的性能。我们总结了它们既准确又不能提供可靠估计的常见情况。尽管它们在性能上存在差异,但更引人注目的是它们所犯错误的相似性,这是由于一个共同的简化的统一未来速度假设。虽然这些进度指标的开发人员意识到这种假设可能会导致错误,但他们既没有探索错误可能有多大,也没有调查消除这种假设的可行性。为了纠正这个问题,我们提出了一个新的查询进度指标,类似于这些早期的进度指标,但没有统一的速度假设。实验表明,在TPC-H基准测试中,对于原始进度指示器的误差高达查询运行时间的30倍的查询,新的进度指示器精确到10%以内。我们还讨论了仍然存在的错误的来源,并阐明了需要采取哪些措施来消除这些错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GSLPI: A Cost-Based Query Progress Indicator
Progress indicators for SQL queries were first published in 2004 with the simultaneous and independent proposals from Chaudhuri et al. and Luo et al. In this paper, we implement both progress indicators in the same commercial RDBMS to investigate their performance. We summarize common cases in which they are both accurate and cases in which they fail to provide reliable estimates. Although there are differences in their performance, much more striking is the similarity in the errors they make due to a common simplifying uniform future speed assumption. While the developers of these progress indicators were aware that this assumption could cause errors, they neither explored how large the errors might be nor did they investigate the feasibility of removing the assumption. To rectify this we propose a new query progress indicator, similar to these early progress indicators but without the uniform speed assumption. Experiments show that on the TPC-H benchmark, on queries for which the original progress indicators have errors up to 30X the query running time, the new progress indicator is accurate to within 10 percent. We also discuss the sources of the errors that still remain and shed some light on what would need to be done to eliminate them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1