{"title":"三层双循环流化床气化炉的运行特性","authors":"T. Murakami, Minoru Asai, Yoshizo Suzuki","doi":"10.7791/JHTS.37.87","DOIUrl":null,"url":null,"abstract":"A new type of circulating fluidized bed gasifier was proposed. The main features of this proposed gasifier are the adoption of a triple-beds structure (comprising pyrolyzer, gasifier, and combustor), the separation of a circulation path for tar-absorbing material and that for the fuel and silica sand. Independent circulation systems are employed for the fuel system and for the tar-absorbing particles, and the pyrolyzer and gasifier each have a two-stage fluidized bed: the lower stage is for the fuel system and the upper stage is for the tar-absorbing system. The two circulation systems each have an independent combustor. This new gasifier is called “a fluidized bed gasifier with triple-beds and dual circulation”. The objectives of this work are to clarify the operation characteristics by using a laboratory-scale cold model. As a result, the stable circulation of the particle in upper and lower stages was able to be verified. Additionally, a wide range of the particle circulation rate, which contains the target value, was obtained. The particle circulation rate can be arranged by pressure drop of riser.","PeriodicalId":113412,"journal":{"name":"Journal of High Temperature Society","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operation Characteristics in a Fluidized Bed Gasifier with Triple-beds and Dual Circulation\",\"authors\":\"T. Murakami, Minoru Asai, Yoshizo Suzuki\",\"doi\":\"10.7791/JHTS.37.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new type of circulating fluidized bed gasifier was proposed. The main features of this proposed gasifier are the adoption of a triple-beds structure (comprising pyrolyzer, gasifier, and combustor), the separation of a circulation path for tar-absorbing material and that for the fuel and silica sand. Independent circulation systems are employed for the fuel system and for the tar-absorbing particles, and the pyrolyzer and gasifier each have a two-stage fluidized bed: the lower stage is for the fuel system and the upper stage is for the tar-absorbing system. The two circulation systems each have an independent combustor. This new gasifier is called “a fluidized bed gasifier with triple-beds and dual circulation”. The objectives of this work are to clarify the operation characteristics by using a laboratory-scale cold model. As a result, the stable circulation of the particle in upper and lower stages was able to be verified. Additionally, a wide range of the particle circulation rate, which contains the target value, was obtained. The particle circulation rate can be arranged by pressure drop of riser.\",\"PeriodicalId\":113412,\"journal\":{\"name\":\"Journal of High Temperature Society\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Temperature Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7791/JHTS.37.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Temperature Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7791/JHTS.37.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operation Characteristics in a Fluidized Bed Gasifier with Triple-beds and Dual Circulation
A new type of circulating fluidized bed gasifier was proposed. The main features of this proposed gasifier are the adoption of a triple-beds structure (comprising pyrolyzer, gasifier, and combustor), the separation of a circulation path for tar-absorbing material and that for the fuel and silica sand. Independent circulation systems are employed for the fuel system and for the tar-absorbing particles, and the pyrolyzer and gasifier each have a two-stage fluidized bed: the lower stage is for the fuel system and the upper stage is for the tar-absorbing system. The two circulation systems each have an independent combustor. This new gasifier is called “a fluidized bed gasifier with triple-beds and dual circulation”. The objectives of this work are to clarify the operation characteristics by using a laboratory-scale cold model. As a result, the stable circulation of the particle in upper and lower stages was able to be verified. Additionally, a wide range of the particle circulation rate, which contains the target value, was obtained. The particle circulation rate can be arranged by pressure drop of riser.