{"title":"FDSOI设计经验与建议","authors":"Herbert Preuthen, Jurgen Dirks","doi":"10.1109/SOCC.2017.8225983","DOIUrl":null,"url":null,"abstract":"22FDX™ is new technology from GLOBALFOUNDRIES based on Fully-Depleted-Silicon-on-Insulator (FDSOI). Its transistor architecture consists of a thin layer of semiconductor material on top of a body-oxide. On the top side, a planar leading-edge MOS-transistor is formed. From the bottom, the wells have electrostatic influence through the body-oxide, which is large enough to shift the transistor threshold voltages between high-performance- and low-leakage operation. The tutorial will give an introduction to the technology and show the digital design reference flow from GLOBALFOUNDRIES, which has been developed for 22FDX. Particular emphasis will be given on how to use FDSOI for low-power designs using the back-gate bias. Also, design examples will be exposed and results will be discussed.","PeriodicalId":366264,"journal":{"name":"2017 30th IEEE International System-on-Chip Conference (SOCC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FDSOI design experience and recommendations\",\"authors\":\"Herbert Preuthen, Jurgen Dirks\",\"doi\":\"10.1109/SOCC.2017.8225983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"22FDX™ is new technology from GLOBALFOUNDRIES based on Fully-Depleted-Silicon-on-Insulator (FDSOI). Its transistor architecture consists of a thin layer of semiconductor material on top of a body-oxide. On the top side, a planar leading-edge MOS-transistor is formed. From the bottom, the wells have electrostatic influence through the body-oxide, which is large enough to shift the transistor threshold voltages between high-performance- and low-leakage operation. The tutorial will give an introduction to the technology and show the digital design reference flow from GLOBALFOUNDRIES, which has been developed for 22FDX. Particular emphasis will be given on how to use FDSOI for low-power designs using the back-gate bias. Also, design examples will be exposed and results will be discussed.\",\"PeriodicalId\":366264,\"journal\":{\"name\":\"2017 30th IEEE International System-on-Chip Conference (SOCC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 30th IEEE International System-on-Chip Conference (SOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCC.2017.8225983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 30th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2017.8225983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
22FDX™ is new technology from GLOBALFOUNDRIES based on Fully-Depleted-Silicon-on-Insulator (FDSOI). Its transistor architecture consists of a thin layer of semiconductor material on top of a body-oxide. On the top side, a planar leading-edge MOS-transistor is formed. From the bottom, the wells have electrostatic influence through the body-oxide, which is large enough to shift the transistor threshold voltages between high-performance- and low-leakage operation. The tutorial will give an introduction to the technology and show the digital design reference flow from GLOBALFOUNDRIES, which has been developed for 22FDX. Particular emphasis will be given on how to use FDSOI for low-power designs using the back-gate bias. Also, design examples will be exposed and results will be discussed.