基于变分自编码器和生成对抗网络合成数据的DCNN增强

David Kornish, Soundararajan Ezekiel, Maria Scalzo-Cornacchia
{"title":"基于变分自编码器和生成对抗网络合成数据的DCNN增强","authors":"David Kornish, Soundararajan Ezekiel, Maria Scalzo-Cornacchia","doi":"10.1109/AIPR.2018.8707390","DOIUrl":null,"url":null,"abstract":"Deep convolutional neural networks have recently demonstrated incredible capabilities in areas such as image classification and object detection, but they require large datasets of quality pre-labeled data to achieve high levels of performance. Almost all data is not properly labeled when it is captured, and the process of manually labeling large enough datasets for effective learning is impractical in many real-world applications. New studies have shown that synthetic data, generated from a simulated environment, can be effective training data for DCNNs. However, synthetic data is only as effective as the simulation from which it is gathered, and there is often a significant trade-off between designing a simulation that properly models real-world conditions and simply gathering better real-world data. Using generative network architectures, such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), it is possible to produce new synthetic samples based on the features of real-world data. This data can be used to augment small datasets to increase DCNN performance, similar to traditional augmentation methods such as scaling, translation, rotation, and adding noise. In this paper, we compare the advantages of synthetic data from GANs and VAEs to traditional data augmentation techniques. Initial results are promising, indicating that using synthetic data for augmentation can improve the accuracy of DCNN classifiers.","PeriodicalId":230582,"journal":{"name":"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"DCNN Augmentation via Synthetic Data from Variational Autoencoders and Generative Adversarial Networks\",\"authors\":\"David Kornish, Soundararajan Ezekiel, Maria Scalzo-Cornacchia\",\"doi\":\"10.1109/AIPR.2018.8707390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep convolutional neural networks have recently demonstrated incredible capabilities in areas such as image classification and object detection, but they require large datasets of quality pre-labeled data to achieve high levels of performance. Almost all data is not properly labeled when it is captured, and the process of manually labeling large enough datasets for effective learning is impractical in many real-world applications. New studies have shown that synthetic data, generated from a simulated environment, can be effective training data for DCNNs. However, synthetic data is only as effective as the simulation from which it is gathered, and there is often a significant trade-off between designing a simulation that properly models real-world conditions and simply gathering better real-world data. Using generative network architectures, such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), it is possible to produce new synthetic samples based on the features of real-world data. This data can be used to augment small datasets to increase DCNN performance, similar to traditional augmentation methods such as scaling, translation, rotation, and adding noise. In this paper, we compare the advantages of synthetic data from GANs and VAEs to traditional data augmentation techniques. Initial results are promising, indicating that using synthetic data for augmentation can improve the accuracy of DCNN classifiers.\",\"PeriodicalId\":230582,\"journal\":{\"name\":\"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2018.8707390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2018.8707390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

深度卷积神经网络最近在图像分类和目标检测等领域展示了令人难以置信的能力,但它们需要大量高质量的预标记数据集来实现高水平的性能。几乎所有的数据在被捕获时都没有被正确地标记,并且在许多实际应用中,手动标记足够大的数据集以进行有效学习的过程是不切实际的。新的研究表明,从模拟环境中生成的合成数据可以作为DCNNs的有效训练数据。然而,合成数据的有效性取决于收集到的模拟,在设计一个正确模拟真实世界条件的模拟和简单地收集更好的真实世界数据之间,通常存在一个重要的权衡。使用生成网络架构,如生成对抗网络(gan)和变分自动编码器(VAEs),可以根据现实世界数据的特征生成新的合成样本。该数据可用于增强小数据集以提高DCNN性能,类似于传统的增强方法,如缩放、平移、旋转和添加噪声。在本文中,我们比较了gan和vae合成数据与传统数据增强技术的优势。初步结果是有希望的,表明使用合成数据进行增强可以提高DCNN分类器的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DCNN Augmentation via Synthetic Data from Variational Autoencoders and Generative Adversarial Networks
Deep convolutional neural networks have recently demonstrated incredible capabilities in areas such as image classification and object detection, but they require large datasets of quality pre-labeled data to achieve high levels of performance. Almost all data is not properly labeled when it is captured, and the process of manually labeling large enough datasets for effective learning is impractical in many real-world applications. New studies have shown that synthetic data, generated from a simulated environment, can be effective training data for DCNNs. However, synthetic data is only as effective as the simulation from which it is gathered, and there is often a significant trade-off between designing a simulation that properly models real-world conditions and simply gathering better real-world data. Using generative network architectures, such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), it is possible to produce new synthetic samples based on the features of real-world data. This data can be used to augment small datasets to increase DCNN performance, similar to traditional augmentation methods such as scaling, translation, rotation, and adding noise. In this paper, we compare the advantages of synthetic data from GANs and VAEs to traditional data augmentation techniques. Initial results are promising, indicating that using synthetic data for augmentation can improve the accuracy of DCNN classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Annotation of Satellite Imagery using Model-based Projections Visualizing Compression of Deep Learning Models for Classification Malware Classification using Deep Convolutional Neural Networks An Improved Star Detection Algorithm Using a Combination of Statistical and Morphological Image Processing Techniques Improving Nuclei Classification Performance in H&E Stained Tissue Images Using Fully Convolutional Regression Network and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1