基于深度强化学习的交通工程显式路径控制

Zeyu Luan, Lie Lu, Qing Li, Yong Jiang
{"title":"基于深度强化学习的交通工程显式路径控制","authors":"Zeyu Luan, Lie Lu, Qing Li, Yong Jiang","doi":"10.1109/GLOBECOM46510.2021.9685792","DOIUrl":null,"url":null,"abstract":"Segment Routing (SR) provides Traffic Engineering (TE) with Explicit Path Control (EPC) by steering data flows passing through a list of SR routers along a desired path. However, large-scale migration from a pure IP network to a full SR one requires prohibitive hardware replacement and software update. Therefore, network operators prefer to upgrade a subset of IP routers into SR routers during a transitional period. This paper proposes EPC-TE to optimize TE performance in hybrid IP/SR networks where partially deployed SR routers coexist with legacy IP routers. We propose a concept of key nodes to achieve EPC over desired paths and a criterion to select which IP routers to upgrade first under a pre-defined upgrading ratio. EPC-TE leverages Deep Reinforcement Learning (DRL) to inference the optimal traffic splitting ratio across multiple controllable paths between source-destination pairs. EPC-TE can achieve comparable TE performance as a full SR network with an upgrading ratio less than 30%. Extensive experimental results with real-world topologies show that EPC-TE significantly outperforms other baseline TE solutions in minimizing maximum link utilization.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"EPC-TE: Explicit Path Control in Traffic Engineering with Deep Reinforcement Learning\",\"authors\":\"Zeyu Luan, Lie Lu, Qing Li, Yong Jiang\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segment Routing (SR) provides Traffic Engineering (TE) with Explicit Path Control (EPC) by steering data flows passing through a list of SR routers along a desired path. However, large-scale migration from a pure IP network to a full SR one requires prohibitive hardware replacement and software update. Therefore, network operators prefer to upgrade a subset of IP routers into SR routers during a transitional period. This paper proposes EPC-TE to optimize TE performance in hybrid IP/SR networks where partially deployed SR routers coexist with legacy IP routers. We propose a concept of key nodes to achieve EPC over desired paths and a criterion to select which IP routers to upgrade first under a pre-defined upgrading ratio. EPC-TE leverages Deep Reinforcement Learning (DRL) to inference the optimal traffic splitting ratio across multiple controllable paths between source-destination pairs. EPC-TE can achieve comparable TE performance as a full SR network with an upgrading ratio less than 30%. Extensive experimental results with real-world topologies show that EPC-TE significantly outperforms other baseline TE solutions in minimizing maximum link utilization.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

分段路由(SR)为流量工程(TE)提供了显式路径控制(EPC),它引导数据流沿着期望的路径通过一系列SR路由器。然而,从纯IP网络到完整SR网络的大规模迁移需要大量的硬件更换和软件更新。因此,网络运营商倾向于在过渡时期将一部分IP路由器升级为SR路由器。本文提出EPC-TE来优化IP/SR混合网络中部分部署的SR路由器与传统IP路由器共存的TE性能。我们提出了在期望路径上实现EPC的关键节点概念,以及在预定义的升级比率下选择首先升级哪些IP路由器的标准。EPC-TE利用深度强化学习(DRL)来推断源-目的对之间多条可控路径的最佳流量分割比率。EPC-TE可以达到与全SR网络相当的TE性能,升级率不超过30%。实际拓扑的大量实验结果表明,EPC-TE在最小化最大链路利用率方面显著优于其他基线TE解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EPC-TE: Explicit Path Control in Traffic Engineering with Deep Reinforcement Learning
Segment Routing (SR) provides Traffic Engineering (TE) with Explicit Path Control (EPC) by steering data flows passing through a list of SR routers along a desired path. However, large-scale migration from a pure IP network to a full SR one requires prohibitive hardware replacement and software update. Therefore, network operators prefer to upgrade a subset of IP routers into SR routers during a transitional period. This paper proposes EPC-TE to optimize TE performance in hybrid IP/SR networks where partially deployed SR routers coexist with legacy IP routers. We propose a concept of key nodes to achieve EPC over desired paths and a criterion to select which IP routers to upgrade first under a pre-defined upgrading ratio. EPC-TE leverages Deep Reinforcement Learning (DRL) to inference the optimal traffic splitting ratio across multiple controllable paths between source-destination pairs. EPC-TE can achieve comparable TE performance as a full SR network with an upgrading ratio less than 30%. Extensive experimental results with real-world topologies show that EPC-TE significantly outperforms other baseline TE solutions in minimizing maximum link utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Blockchain-based Energy Trading Scheme for Dynamic Charging of Electric Vehicles Algebraic Design of a Class of Rate 1/3 Quasi-Cyclic LDPC Codes A Fast and Scalable Resource Allocation Scheme for End-to-End Network Slices Modelling of Multi-Tier Handover in LiFi Networks Enabling Efficient Scheduling Policy in Intelligent Reflecting Surface Aided Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1