Yukinobu Nishio, K. Fujimura, S. Ogihara, M. Okano, S. Kitagawa
{"title":"采用超精密加工制造的随机微透镜阵列照明装置","authors":"Yukinobu Nishio, K. Fujimura, S. Ogihara, M. Okano, S. Kitagawa","doi":"10.1117/12.2037486","DOIUrl":null,"url":null,"abstract":"The micro lens array illumination device has an advantage on transmittance, but it also has the problem of the generation of diffraction pattern. Well-known method for reducing diffraction is adding randomness to array structure (random structure), but there are many choices to do it. In this study we examined the randomness with a scope that is realizable by diamond machining yet with good productivity. As the result, we have found that the diffraction pattern can be reduced sufficiently by adding randomness of some 10% of its lattice constant to spatial configuration of periodic lattice of micro lens array. In addition, we have also examined controlling the illuminance distribution, by taking advantage of high form accuracy which is special features of diamond machining.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Random micro-lens array illumination device manufactured by ultra-precision machining\",\"authors\":\"Yukinobu Nishio, K. Fujimura, S. Ogihara, M. Okano, S. Kitagawa\",\"doi\":\"10.1117/12.2037486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The micro lens array illumination device has an advantage on transmittance, but it also has the problem of the generation of diffraction pattern. Well-known method for reducing diffraction is adding randomness to array structure (random structure), but there are many choices to do it. In this study we examined the randomness with a scope that is realizable by diamond machining yet with good productivity. As the result, we have found that the diffraction pattern can be reduced sufficiently by adding randomness of some 10% of its lattice constant to spatial configuration of periodic lattice of micro lens array. In addition, we have also examined controlling the illuminance distribution, by taking advantage of high form accuracy which is special features of diamond machining.\",\"PeriodicalId\":395835,\"journal\":{\"name\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2037486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2037486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Random micro-lens array illumination device manufactured by ultra-precision machining
The micro lens array illumination device has an advantage on transmittance, but it also has the problem of the generation of diffraction pattern. Well-known method for reducing diffraction is adding randomness to array structure (random structure), but there are many choices to do it. In this study we examined the randomness with a scope that is realizable by diamond machining yet with good productivity. As the result, we have found that the diffraction pattern can be reduced sufficiently by adding randomness of some 10% of its lattice constant to spatial configuration of periodic lattice of micro lens array. In addition, we have also examined controlling the illuminance distribution, by taking advantage of high form accuracy which is special features of diamond machining.