情感分析,以社区观点为基础的旅游目的地,使用天真的贝斯

Rizki Alamsyah, Tb. Ai Munandar, Fata Nidaul Khasanah, Siti Setiawati
{"title":"情感分析,以社区观点为基础的旅游目的地,使用天真的贝斯","authors":"Rizki Alamsyah, Tb. Ai Munandar, Fata Nidaul Khasanah, Siti Setiawati","doi":"10.20895/dinda.v2i2.690","DOIUrl":null,"url":null,"abstract":"The topic used in this research is to discuss the problem of public opinion on social media related to tourist destinations in Bekasi Regency by implementing the Naive Bayes algorithm to conduct sentiment analysis on existing opinions. This study aims to analyze public opinion on social media towards tourist destinations in Bekasi Regency using the Naive Bayes algorithm. The data used in this study are posts or comments from the public on social media facebook as much as 1000 data. The method of data collection is done manually. The data analysis technique in this study are changing non-standard words, labelling, text preprocessing and naive bayes analysis methods. The results of this study indicate that positive opinion dominates compared to negative and neutral opinions with the results obtained at F1 positive score 83.5%, F1 negative score 68.2% and F1 neutral score 59.5% with positive recall 81%, negative 82% and neutral 55% precision positive 85%, negative 58% and neutral 64% with an accuracy rate of 76%.","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sentiment Analysis Destinasi Wisata Berdasarkan Opini Masyarakat Menggunakan Naive Bayes\",\"authors\":\"Rizki Alamsyah, Tb. Ai Munandar, Fata Nidaul Khasanah, Siti Setiawati\",\"doi\":\"10.20895/dinda.v2i2.690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The topic used in this research is to discuss the problem of public opinion on social media related to tourist destinations in Bekasi Regency by implementing the Naive Bayes algorithm to conduct sentiment analysis on existing opinions. This study aims to analyze public opinion on social media towards tourist destinations in Bekasi Regency using the Naive Bayes algorithm. The data used in this study are posts or comments from the public on social media facebook as much as 1000 data. The method of data collection is done manually. The data analysis technique in this study are changing non-standard words, labelling, text preprocessing and naive bayes analysis methods. The results of this study indicate that positive opinion dominates compared to negative and neutral opinions with the results obtained at F1 positive score 83.5%, F1 negative score 68.2% and F1 neutral score 59.5% with positive recall 81%, negative 82% and neutral 55% precision positive 85%, negative 58% and neutral 64% with an accuracy rate of 76%.\",\"PeriodicalId\":419119,\"journal\":{\"name\":\"Journal of Dinda : Data Science, Information Technology, and Data Analytics\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dinda : Data Science, Information Technology, and Data Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20895/dinda.v2i2.690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20895/dinda.v2i2.690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的主题是通过使用朴素贝叶斯算法对现有的意见进行情感分析,来讨论与贝卡西地区旅游目的地相关的社交媒体舆论问题。本研究旨在利用朴素贝叶斯算法分析社会媒体上对贝卡西摄政旅游目的地的舆论。本研究使用的数据是公众在社交媒体facebook上的帖子或评论多达1000条数据。数据收集的方法是手工完成的。本研究的数据分析技术包括非标准词、标签、文本预处理和朴素贝叶斯分析方法。本研究结果表明,在F1阳性评分为83.5%、F1阴性评分为68.2%、F1中性评分为59.5%时,正面回忆率为81%、负面回忆率为82%、中性回忆率为55%时,正面回忆率为85%、负面回忆率为58%、中性回忆率为64%,正确率为76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sentiment Analysis Destinasi Wisata Berdasarkan Opini Masyarakat Menggunakan Naive Bayes
The topic used in this research is to discuss the problem of public opinion on social media related to tourist destinations in Bekasi Regency by implementing the Naive Bayes algorithm to conduct sentiment analysis on existing opinions. This study aims to analyze public opinion on social media towards tourist destinations in Bekasi Regency using the Naive Bayes algorithm. The data used in this study are posts or comments from the public on social media facebook as much as 1000 data. The method of data collection is done manually. The data analysis technique in this study are changing non-standard words, labelling, text preprocessing and naive bayes analysis methods. The results of this study indicate that positive opinion dominates compared to negative and neutral opinions with the results obtained at F1 positive score 83.5%, F1 negative score 68.2% and F1 neutral score 59.5% with positive recall 81%, negative 82% and neutral 55% precision positive 85%, negative 58% and neutral 64% with an accuracy rate of 76%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of Sleep Disorders Using Random Forest on Sleep Health and Lifestyle Dataset Classification of Drug Types using Decision Tree Algorithm Dominant Requirements for Student Graduation in the Faculty of Informatics using the C4.5 Algorithm Minimalist DCT-based Depthwise Separable Convolutional Neural Network Approach for Tangut Script The Descriptive Analysis of Perceptions of ITTP Data Science Students regarding Face-to-Face Learning Plans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1