大面积微图样气体探测器的构建

P. Bernhard, A. Brogna, S. Caiazza, A. Düdder, P. Gülker, C. Kahra, T. Lin, M. Schott, Q. Weitzel, E. Yildirim
{"title":"大面积微图样气体探测器的构建","authors":"P. Bernhard, A. Brogna, S. Caiazza, A. Düdder, P. Gülker, C. Kahra, T. Lin, M. Schott, Q. Weitzel, E. Yildirim","doi":"10.1109/NSSMIC.2016.8069756","DOIUrl":null,"url":null,"abstract":"Particle physics experiments often comprise tracking detectors with areas of up to a few square meters. If a spatial resolution of the order of 100μm and high-rate capability are required, Micro Pattern Gaseous Detectors (MPGD) are a cost-effective solution. However, the construction of large-area MPGDs is challenging, since tight fabrication tolerances have to be met to guarantee a stable and homogeneous performance. A precision granite table and an automated 3-D positioning system with an attached laser sensor, both inside a laminar-flow cell, have therefore been set up in the PRISMA Detector Lab at Mainz. Currently, this infrastructure is used to produce drift panels for the upgrade of the ATLAS muon spectrometer at CERN with Micro Mesh Gaseous Structure (Micromegas) detectors. In order to parallelize production steps, movable vacuum table boards with a surface planarity of about 20μm (root mean square) have been designed and built. We present preliminary results on the achieved precision of drift panel prototypes. These results are in particular relevant for future construction of large-area MPGDs, such as the Gas Electron Multiplier (GEM) detectors for experiments at the future MESA accelerator at Mainz.","PeriodicalId":184587,"journal":{"name":"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Construction of large-area micro-pattern gaseous detectors\",\"authors\":\"P. Bernhard, A. Brogna, S. Caiazza, A. Düdder, P. Gülker, C. Kahra, T. Lin, M. Schott, Q. Weitzel, E. Yildirim\",\"doi\":\"10.1109/NSSMIC.2016.8069756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle physics experiments often comprise tracking detectors with areas of up to a few square meters. If a spatial resolution of the order of 100μm and high-rate capability are required, Micro Pattern Gaseous Detectors (MPGD) are a cost-effective solution. However, the construction of large-area MPGDs is challenging, since tight fabrication tolerances have to be met to guarantee a stable and homogeneous performance. A precision granite table and an automated 3-D positioning system with an attached laser sensor, both inside a laminar-flow cell, have therefore been set up in the PRISMA Detector Lab at Mainz. Currently, this infrastructure is used to produce drift panels for the upgrade of the ATLAS muon spectrometer at CERN with Micro Mesh Gaseous Structure (Micromegas) detectors. In order to parallelize production steps, movable vacuum table boards with a surface planarity of about 20μm (root mean square) have been designed and built. We present preliminary results on the achieved precision of drift panel prototypes. These results are in particular relevant for future construction of large-area MPGDs, such as the Gas Electron Multiplier (GEM) detectors for experiments at the future MESA accelerator at Mainz.\",\"PeriodicalId\":184587,\"journal\":{\"name\":\"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2016.8069756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2016.8069756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

粒子物理实验通常包括跟踪探测器,其面积可达几平方米。如果需要100μm的空间分辨率和高速率能力,微模式气体探测器(MPGD)是一种经济高效的解决方案。然而,大面积mpgd的建造具有挑战性,因为必须满足严格的制造公差,以保证稳定和均匀的性能。因此,在美因茨的PRISMA探测器实验室中,一个精密的花岗岩工作台和一个带有附加激光传感器的自动3-D定位系统都安装在层流细胞内。目前,该基础设施用于生产漂移板,用于升级欧洲核子研究中心的ATLAS μ子光谱仪,该光谱仪带有微孔气体结构(Micromegas)探测器。为了使生产工序并行化,设计并制作了表面平面度约为20μm(均方根)的可移动真空工作台板。我们给出了漂移板原型所达到精度的初步结果。这些结果对未来大面积mpgd的建设尤其重要,例如未来美因茨MESA加速器实验用的气体电子倍增器(GEM)探测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of large-area micro-pattern gaseous detectors
Particle physics experiments often comprise tracking detectors with areas of up to a few square meters. If a spatial resolution of the order of 100μm and high-rate capability are required, Micro Pattern Gaseous Detectors (MPGD) are a cost-effective solution. However, the construction of large-area MPGDs is challenging, since tight fabrication tolerances have to be met to guarantee a stable and homogeneous performance. A precision granite table and an automated 3-D positioning system with an attached laser sensor, both inside a laminar-flow cell, have therefore been set up in the PRISMA Detector Lab at Mainz. Currently, this infrastructure is used to produce drift panels for the upgrade of the ATLAS muon spectrometer at CERN with Micro Mesh Gaseous Structure (Micromegas) detectors. In order to parallelize production steps, movable vacuum table boards with a surface planarity of about 20μm (root mean square) have been designed and built. We present preliminary results on the achieved precision of drift panel prototypes. These results are in particular relevant for future construction of large-area MPGDs, such as the Gas Electron Multiplier (GEM) detectors for experiments at the future MESA accelerator at Mainz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of flexible, scalable, low cost readout for beam tests of the high granularity calorimeter for the CMS endcap Latest frontier technology and design of the ATLAS calorimeter trigger board dedicated to jet identification for the LHC run 3 The ATLAS tile calorimeter DCS for run 2 The phase-II ATLAS pixel tracker upgrade: Layout and mechanics Null-hypothesis testing using distance metrics for verification of arms-control treaties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1