{"title":"机器学习分类器在脑肿瘤MR图像中的性能分析","authors":"L. Farhi, Razia Zia, Z. Ali","doi":"10.33317/SSURJ.V1I1.36","DOIUrl":null,"url":null,"abstract":"Brain cancer has remained one of the key causes ofdeaths in people of all ages. One way to survival amongst patientsis to correctly diagnose cancer in its early stages. Recentlymachine learning has become a very important tool in medicalimage classification. Our approach is to examine and comparevarious machine learning classification algorithms that help inbrain tumor classification of Magnetic Resonance (MR) images.We have compared Artificial Neural Network (ANN), K-nearestNeighbor (KNN), Decision Tree (DT), Support Vector Machine(SVM) and Naïve Bayes (NB) classifiers to determine theaccuracy of each classifier and find the best amongst them forclassification of cancerous and noncancerous brain MR images.We have used 86 MR images and extracted a large number offeatures for each image. Since the equal number of images, havebeen used thus there is no suspicion of results being biased. Forour data set the most accurate results were provided by ANN. Itwas found that ANN provides better results for medium to largedatabase of Brain MR Images.","PeriodicalId":158249,"journal":{"name":"Sir Syed Research Journal of Engineering & Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"5 Performance Analysis of Machine Learning Classifiers for Brain Tumor MR Images\",\"authors\":\"L. Farhi, Razia Zia, Z. Ali\",\"doi\":\"10.33317/SSURJ.V1I1.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain cancer has remained one of the key causes ofdeaths in people of all ages. One way to survival amongst patientsis to correctly diagnose cancer in its early stages. Recentlymachine learning has become a very important tool in medicalimage classification. Our approach is to examine and comparevarious machine learning classification algorithms that help inbrain tumor classification of Magnetic Resonance (MR) images.We have compared Artificial Neural Network (ANN), K-nearestNeighbor (KNN), Decision Tree (DT), Support Vector Machine(SVM) and Naïve Bayes (NB) classifiers to determine theaccuracy of each classifier and find the best amongst them forclassification of cancerous and noncancerous brain MR images.We have used 86 MR images and extracted a large number offeatures for each image. Since the equal number of images, havebeen used thus there is no suspicion of results being biased. Forour data set the most accurate results were provided by ANN. Itwas found that ANN provides better results for medium to largedatabase of Brain MR Images.\",\"PeriodicalId\":158249,\"journal\":{\"name\":\"Sir Syed Research Journal of Engineering & Technology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sir Syed Research Journal of Engineering & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33317/SSURJ.V1I1.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sir Syed Research Journal of Engineering & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33317/SSURJ.V1I1.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
5 Performance Analysis of Machine Learning Classifiers for Brain Tumor MR Images
Brain cancer has remained one of the key causes ofdeaths in people of all ages. One way to survival amongst patientsis to correctly diagnose cancer in its early stages. Recentlymachine learning has become a very important tool in medicalimage classification. Our approach is to examine and comparevarious machine learning classification algorithms that help inbrain tumor classification of Magnetic Resonance (MR) images.We have compared Artificial Neural Network (ANN), K-nearestNeighbor (KNN), Decision Tree (DT), Support Vector Machine(SVM) and Naïve Bayes (NB) classifiers to determine theaccuracy of each classifier and find the best amongst them forclassification of cancerous and noncancerous brain MR images.We have used 86 MR images and extracted a large number offeatures for each image. Since the equal number of images, havebeen used thus there is no suspicion of results being biased. Forour data set the most accurate results were provided by ANN. Itwas found that ANN provides better results for medium to largedatabase of Brain MR Images.