机器学习分类器在脑肿瘤MR图像中的性能分析

L. Farhi, Razia Zia, Z. Ali
{"title":"机器学习分类器在脑肿瘤MR图像中的性能分析","authors":"L. Farhi, Razia Zia, Z. Ali","doi":"10.33317/SSURJ.V1I1.36","DOIUrl":null,"url":null,"abstract":"Brain cancer has remained one of the key causes ofdeaths in people of all ages. One way to survival amongst patientsis to correctly diagnose cancer in its early stages. Recentlymachine learning has become a very important tool in medicalimage classification. Our approach is to examine and comparevarious machine learning classification algorithms that help inbrain tumor classification of Magnetic Resonance (MR) images.We have compared Artificial Neural Network (ANN), K-nearestNeighbor (KNN), Decision Tree (DT), Support Vector Machine(SVM) and Naïve Bayes (NB) classifiers to determine theaccuracy of each classifier and find the best amongst them forclassification of cancerous and noncancerous brain MR images.We have used 86 MR images and extracted a large number offeatures for each image. Since the equal number of images, havebeen used thus there is no suspicion of results being biased. Forour data set the most accurate results were provided by ANN. Itwas found that ANN provides better results for medium to largedatabase of Brain MR Images.","PeriodicalId":158249,"journal":{"name":"Sir Syed Research Journal of Engineering & Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"5 Performance Analysis of Machine Learning Classifiers for Brain Tumor MR Images\",\"authors\":\"L. Farhi, Razia Zia, Z. Ali\",\"doi\":\"10.33317/SSURJ.V1I1.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain cancer has remained one of the key causes ofdeaths in people of all ages. One way to survival amongst patientsis to correctly diagnose cancer in its early stages. Recentlymachine learning has become a very important tool in medicalimage classification. Our approach is to examine and comparevarious machine learning classification algorithms that help inbrain tumor classification of Magnetic Resonance (MR) images.We have compared Artificial Neural Network (ANN), K-nearestNeighbor (KNN), Decision Tree (DT), Support Vector Machine(SVM) and Naïve Bayes (NB) classifiers to determine theaccuracy of each classifier and find the best amongst them forclassification of cancerous and noncancerous brain MR images.We have used 86 MR images and extracted a large number offeatures for each image. Since the equal number of images, havebeen used thus there is no suspicion of results being biased. Forour data set the most accurate results were provided by ANN. Itwas found that ANN provides better results for medium to largedatabase of Brain MR Images.\",\"PeriodicalId\":158249,\"journal\":{\"name\":\"Sir Syed Research Journal of Engineering & Technology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sir Syed Research Journal of Engineering & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33317/SSURJ.V1I1.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sir Syed Research Journal of Engineering & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33317/SSURJ.V1I1.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

脑癌一直是各年龄段人群死亡的主要原因之一。在早期阶段正确诊断癌症是患者生存的一个途径。近年来,机器学习已成为医学图像分类的重要工具。我们的方法是检查和比较各种机器学习分类算法,这些算法有助于对磁共振(MR)图像进行脑肿瘤分类。我们比较了人工神经网络(ANN)、k -最近邻(KNN)、决策树(DT)、支持向量机(SVM)和Naïve贝叶斯(NB)分类器,以确定每个分类器的准确性,并找到其中最好的分类器来分类癌性和非癌性脑MR图像。我们使用了86张MR图像,并为每张图像提取了大量的特征。由于使用了相同数量的图像,因此不存在结果有偏差的怀疑。对于我们的数据集,人工神经网络提供的结果最准确。结果表明,人工神经网络在中大型脑磁共振图像数据库中具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5 Performance Analysis of Machine Learning Classifiers for Brain Tumor MR Images
Brain cancer has remained one of the key causes ofdeaths in people of all ages. One way to survival amongst patientsis to correctly diagnose cancer in its early stages. Recentlymachine learning has become a very important tool in medicalimage classification. Our approach is to examine and comparevarious machine learning classification algorithms that help inbrain tumor classification of Magnetic Resonance (MR) images.We have compared Artificial Neural Network (ANN), K-nearestNeighbor (KNN), Decision Tree (DT), Support Vector Machine(SVM) and Naïve Bayes (NB) classifiers to determine theaccuracy of each classifier and find the best amongst them forclassification of cancerous and noncancerous brain MR images.We have used 86 MR images and extracted a large number offeatures for each image. Since the equal number of images, havebeen used thus there is no suspicion of results being biased. Forour data set the most accurate results were provided by ANN. Itwas found that ANN provides better results for medium to largedatabase of Brain MR Images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Architecture for E-commerce Websites Prototyping Non-holonomic Hovercraft for Path Planning and Obstacle Avoidance Lifespan and Decomposition Effects of 1st and 3 rd Generation Silicon Solar Cell with respect to Environment and Health A Conceptual System on Ubiquitous Cardiovascular Health-Care System (UCHS) 1 Gesture Based Communication System for Vocally Impaired.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1