Vinh Thinh Ho, K. Pal, Niko Kleer, K. Berberich, G. Weikum
{"title":"有数量的实体:抽取、搜索和排序","authors":"Vinh Thinh Ho, K. Pal, Niko Kleer, K. Berberich, G. Weikum","doi":"10.1145/3336191.3371860","DOIUrl":null,"url":null,"abstract":"Quantities are more than numeric values. They represent measures for entities, expressed in numbers with associated units. Search queries often include quantities, such as athletes who ran 200m under 20 seconds or companies with quarterly revenue above $2 Billion. Processing such queries requires understanding the quantities, where capturing the surrounding context is an essential part of it. Although modern search engines or QA systems handle entity-centric queries well, they consider numbers and units as simple keywords, and therefore fail to understand the condition (less than, above, etc.), the unit of interest (seconds, dollar, etc.), and the context of the quantity (200m race, quarterly revenue, etc.) As a result, they cannot generate the correct candidate answers. In this work, we demonstrate a prototype QA system, called Qsearch, that can handle advanced queries with quantity constraints using the common cues present in both query and the text sources.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Entities with Quantities: Extraction, Search, and Ranking\",\"authors\":\"Vinh Thinh Ho, K. Pal, Niko Kleer, K. Berberich, G. Weikum\",\"doi\":\"10.1145/3336191.3371860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantities are more than numeric values. They represent measures for entities, expressed in numbers with associated units. Search queries often include quantities, such as athletes who ran 200m under 20 seconds or companies with quarterly revenue above $2 Billion. Processing such queries requires understanding the quantities, where capturing the surrounding context is an essential part of it. Although modern search engines or QA systems handle entity-centric queries well, they consider numbers and units as simple keywords, and therefore fail to understand the condition (less than, above, etc.), the unit of interest (seconds, dollar, etc.), and the context of the quantity (200m race, quarterly revenue, etc.) As a result, they cannot generate the correct candidate answers. In this work, we demonstrate a prototype QA system, called Qsearch, that can handle advanced queries with quantity constraints using the common cues present in both query and the text sources.\",\"PeriodicalId\":319008,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336191.3371860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Entities with Quantities: Extraction, Search, and Ranking
Quantities are more than numeric values. They represent measures for entities, expressed in numbers with associated units. Search queries often include quantities, such as athletes who ran 200m under 20 seconds or companies with quarterly revenue above $2 Billion. Processing such queries requires understanding the quantities, where capturing the surrounding context is an essential part of it. Although modern search engines or QA systems handle entity-centric queries well, they consider numbers and units as simple keywords, and therefore fail to understand the condition (less than, above, etc.), the unit of interest (seconds, dollar, etc.), and the context of the quantity (200m race, quarterly revenue, etc.) As a result, they cannot generate the correct candidate answers. In this work, we demonstrate a prototype QA system, called Qsearch, that can handle advanced queries with quantity constraints using the common cues present in both query and the text sources.