M. Sutagundar, B. G. Sheeparamatti, D. S. Jangamshetti
{"title":"基于内点算法的微盘谐振器设计优化","authors":"M. Sutagundar, B. G. Sheeparamatti, D. S. Jangamshetti","doi":"10.1109/EDKCON.2018.8770422","DOIUrl":null,"url":null,"abstract":"This paper presents design optimization of MEMS disk resonator using interior point method. Determining the optimized dimensions of disk resonator for a particular resonance frequency and quality factor along with minimum possible motional resistance is attempted. The algorithm is implemented using MATLAB. The results obtained are compared with a fabricated device. The developed method can provide faster design optimization compared to full wave simulators resulting in significant reduction of design time.","PeriodicalId":344143,"journal":{"name":"2018 IEEE Electron Devices Kolkata Conference (EDKCON)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Optimization of Microdisk Resonator Using Interior Point Algorithm\",\"authors\":\"M. Sutagundar, B. G. Sheeparamatti, D. S. Jangamshetti\",\"doi\":\"10.1109/EDKCON.2018.8770422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents design optimization of MEMS disk resonator using interior point method. Determining the optimized dimensions of disk resonator for a particular resonance frequency and quality factor along with minimum possible motional resistance is attempted. The algorithm is implemented using MATLAB. The results obtained are compared with a fabricated device. The developed method can provide faster design optimization compared to full wave simulators resulting in significant reduction of design time.\",\"PeriodicalId\":344143,\"journal\":{\"name\":\"2018 IEEE Electron Devices Kolkata Conference (EDKCON)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Electron Devices Kolkata Conference (EDKCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDKCON.2018.8770422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Electron Devices Kolkata Conference (EDKCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDKCON.2018.8770422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design Optimization of Microdisk Resonator Using Interior Point Algorithm
This paper presents design optimization of MEMS disk resonator using interior point method. Determining the optimized dimensions of disk resonator for a particular resonance frequency and quality factor along with minimum possible motional resistance is attempted. The algorithm is implemented using MATLAB. The results obtained are compared with a fabricated device. The developed method can provide faster design optimization compared to full wave simulators resulting in significant reduction of design time.