太湖光下OpenFOAM预条件共轭梯度优化

James Lin, Minhua Wen, Delong Meng, Xin Liu, Akira Nukada, S. Matsuoka
{"title":"太湖光下OpenFOAM预条件共轭梯度优化","authors":"James Lin, Minhua Wen, Delong Meng, Xin Liu, Akira Nukada, S. Matsuoka","doi":"10.1109/CCGRID.2018.00042","DOIUrl":null,"url":null,"abstract":"Porting the domain-specific software OpenFOAM onto the TaihuLight supercomputer is a challenging task, due to the highly memory-bound nature of both the supercomputer's processor (SW26010) and the software's liner solvers. Our study tackles this technical challenge, in three steps, by optimizing the linear solvers, such as Preconditioned Conjugate Gradient (PCG), on the SW26010. First, in order to minimize the all_reduce communication cost of PCG, we developed a new algorithm RNPCG, a non-blocking PCG leveraging the on-chip register communication. Second, we optimized three key kernels of the PCG, including proposing a localized version of the Diagonal-based Incomplete Cholesky (LDIC) preconditioner. Third, to scale the RNPCG on TaihuLight, we designed the three-level non-blocking all_reduce operations. With these three steps, we implemented the RNPCG in OpenFOAM. The experimental results on TaihuLight show that 1) compared with the default implementations of OpenFOAM, the RNPCG and the LDIC on a single-core group of SW26010 can achieve a maximum speedup of 8.9X and 3.1X, respectively; 2) the scalable RNPCG can outperform the standard PCG both in the strong and the weak scaling up to 66,560 cores.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimizing Preconditioned Conjugate Gradient on TaihuLight for OpenFOAM\",\"authors\":\"James Lin, Minhua Wen, Delong Meng, Xin Liu, Akira Nukada, S. Matsuoka\",\"doi\":\"10.1109/CCGRID.2018.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Porting the domain-specific software OpenFOAM onto the TaihuLight supercomputer is a challenging task, due to the highly memory-bound nature of both the supercomputer's processor (SW26010) and the software's liner solvers. Our study tackles this technical challenge, in three steps, by optimizing the linear solvers, such as Preconditioned Conjugate Gradient (PCG), on the SW26010. First, in order to minimize the all_reduce communication cost of PCG, we developed a new algorithm RNPCG, a non-blocking PCG leveraging the on-chip register communication. Second, we optimized three key kernels of the PCG, including proposing a localized version of the Diagonal-based Incomplete Cholesky (LDIC) preconditioner. Third, to scale the RNPCG on TaihuLight, we designed the three-level non-blocking all_reduce operations. With these three steps, we implemented the RNPCG in OpenFOAM. The experimental results on TaihuLight show that 1) compared with the default implementations of OpenFOAM, the RNPCG and the LDIC on a single-core group of SW26010 can achieve a maximum speedup of 8.9X and 3.1X, respectively; 2) the scalable RNPCG can outperform the standard PCG both in the strong and the weak scaling up to 66,560 cores.\",\"PeriodicalId\":321027,\"journal\":{\"name\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2018.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

将特定领域的软件OpenFOAM移植到太湖之光超级计算机上是一项具有挑战性的任务,因为超级计算机的处理器(SW26010)和软件的线性求解器都具有高度内存限制的特性。我们的研究通过优化SW26010上的线性求解器(如预条件共轭梯度(PCG)),分三步解决了这一技术挑战。首先,为了最小化PCG的all_reduce通信成本,我们开发了一种新的算法RNPCG,一种利用片上寄存器通信的非阻塞PCG。其次,我们优化了PCG的三个关键内核,包括提出了一个本地化版本的基于对角的不完全Cholesky (LDIC)预条件。第三,为了扩展太湖之光上的RNPCG,我们设计了三层无阻塞的all_reduce操作。通过这三个步骤,我们在OpenFOAM中实现了RNPCG。在太湖之光上的实验结果表明:1)与OpenFOAM的默认实现相比,RNPCG和LDIC在SW26010单核组上的最大加速分别可达到8.9X和3.1X;2)可扩展的RNPCG在强、弱两方面都优于标准PCG,扩展到66,560核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Preconditioned Conjugate Gradient on TaihuLight for OpenFOAM
Porting the domain-specific software OpenFOAM onto the TaihuLight supercomputer is a challenging task, due to the highly memory-bound nature of both the supercomputer's processor (SW26010) and the software's liner solvers. Our study tackles this technical challenge, in three steps, by optimizing the linear solvers, such as Preconditioned Conjugate Gradient (PCG), on the SW26010. First, in order to minimize the all_reduce communication cost of PCG, we developed a new algorithm RNPCG, a non-blocking PCG leveraging the on-chip register communication. Second, we optimized three key kernels of the PCG, including proposing a localized version of the Diagonal-based Incomplete Cholesky (LDIC) preconditioner. Third, to scale the RNPCG on TaihuLight, we designed the three-level non-blocking all_reduce operations. With these three steps, we implemented the RNPCG in OpenFOAM. The experimental results on TaihuLight show that 1) compared with the default implementations of OpenFOAM, the RNPCG and the LDIC on a single-core group of SW26010 can achieve a maximum speedup of 8.9X and 3.1X, respectively; 2) the scalable RNPCG can outperform the standard PCG both in the strong and the weak scaling up to 66,560 cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1