GaAs基扩散焊高压二极管堆叠

J. Toompuu, O. Korolkov, N. Sleptsuk, V. Vojtovich, T. Rang
{"title":"GaAs基扩散焊高压二极管堆叠","authors":"J. Toompuu, O. Korolkov, N. Sleptsuk, V. Vojtovich, T. Rang","doi":"10.1109/SMELEC.2010.5549505","DOIUrl":null,"url":null,"abstract":"The determination of technical requirements for GaAs epistructures intended for high voltage diode stacks has been made. The suitable doping level of p+ substrate was estimated by the contact resistance measurements. Analysis has shown that for the p+ substrates with the current densities about 0.5-1 A/cm2 the specific contact resistance depends weakly on doping concentration (at least in the range from 5x1018 to 1x1019cm–3). The I-V measurements showed that Al/p+−pin contacts for n-layer concentration 1x1015cm–3 have lock-type barrier causing very high voltage drops in diode stacks. For p+−pin−n+ structures the forward voltage drop depends on doping level as well as on epilayer thickness. The reverse voltage depends on pin-layer thickness only. It was found that for diode stacks the suitable doping for p+ substrate is about 5x1018cm–3 and n+ layer doping in epitaxial p+−pin−n+ GaAs structures concentration must be higher than 1x1018 cm3.","PeriodicalId":308501,"journal":{"name":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"GaAs based diffusion welded high voltage diode stacks\",\"authors\":\"J. Toompuu, O. Korolkov, N. Sleptsuk, V. Vojtovich, T. Rang\",\"doi\":\"10.1109/SMELEC.2010.5549505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The determination of technical requirements for GaAs epistructures intended for high voltage diode stacks has been made. The suitable doping level of p+ substrate was estimated by the contact resistance measurements. Analysis has shown that for the p+ substrates with the current densities about 0.5-1 A/cm2 the specific contact resistance depends weakly on doping concentration (at least in the range from 5x1018 to 1x1019cm–3). The I-V measurements showed that Al/p+−pin contacts for n-layer concentration 1x1015cm–3 have lock-type barrier causing very high voltage drops in diode stacks. For p+−pin−n+ structures the forward voltage drop depends on doping level as well as on epilayer thickness. The reverse voltage depends on pin-layer thickness only. It was found that for diode stacks the suitable doping for p+ substrate is about 5x1018cm–3 and n+ layer doping in epitaxial p+−pin−n+ GaAs structures concentration must be higher than 1x1018 cm3.\",\"PeriodicalId\":308501,\"journal\":{\"name\":\"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2010.5549505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2010.5549505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

确定了用于高压二极管堆叠的砷化镓结构的技术要求。通过接触电阻测量,估计了p+衬底的合适掺杂水平。分析表明,对于电流密度约为0.5-1 A/cm2的p+衬底,比接触电阻对掺杂浓度的依赖性较弱(至少在5x1018至1x1019cm-3范围内)。I-V测量表明,n层浓度为1x1015cm-3的Al/p+ -引脚触点具有锁型势垒,导致二极管堆叠中电压降非常高。对于p+ -引脚- n+结构,正向电压降取决于掺杂水平和涂层厚度。反向电压仅取决于引脚层厚度。发现对于二极管叠层,p+衬底的合适掺杂浓度约为5 × 1018cm - 3,外延p+ -引脚- n+ GaAs结构的n+层掺杂浓度必须高于1 × 1018cm3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GaAs based diffusion welded high voltage diode stacks
The determination of technical requirements for GaAs epistructures intended for high voltage diode stacks has been made. The suitable doping level of p+ substrate was estimated by the contact resistance measurements. Analysis has shown that for the p+ substrates with the current densities about 0.5-1 A/cm2 the specific contact resistance depends weakly on doping concentration (at least in the range from 5x1018 to 1x1019cm–3). The I-V measurements showed that Al/p+−pin contacts for n-layer concentration 1x1015cm–3 have lock-type barrier causing very high voltage drops in diode stacks. For p+−pin−n+ structures the forward voltage drop depends on doping level as well as on epilayer thickness. The reverse voltage depends on pin-layer thickness only. It was found that for diode stacks the suitable doping for p+ substrate is about 5x1018cm–3 and n+ layer doping in epitaxial p+−pin−n+ GaAs structures concentration must be higher than 1x1018 cm3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The sensing performance of hydrogen gas sensor utilizing undoped-AlGaN/GaN HEMT Optimum design of SU-8 based accelerometer with reduced cross axis sensitivity A 5-GHZ VCO for WLAN applications Effect of Mn doping on the structural and optical properties of ZnO films Ubiquitous sensor technologies: The way moving forward
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1