一种新的快速收敛自适应算法

P. Palanisamy, N. Kalyanasundaram
{"title":"一种新的快速收敛自适应算法","authors":"P. Palanisamy, N. Kalyanasundaram","doi":"10.1109/ICSCN.2007.350719","DOIUrl":null,"url":null,"abstract":"In this paper, a new fast convergence adaptive algorithm with variable step size is proposed for FIR adaptive filter. This new proposed algorithm is derived based on the quasi-Newton family. Simulation results are presented to compare the convergence of the proposed algorithm with least mean square (LMS) algorithm and RLS algorithm. It shows that the proposed new algorithm has comparable convergence speed to the other known adaptive algorithms","PeriodicalId":257948,"journal":{"name":"2007 International Conference on Signal Processing, Communications and Networking","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Fast Convergence Adaptive Algorithm\",\"authors\":\"P. Palanisamy, N. Kalyanasundaram\",\"doi\":\"10.1109/ICSCN.2007.350719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new fast convergence adaptive algorithm with variable step size is proposed for FIR adaptive filter. This new proposed algorithm is derived based on the quasi-Newton family. Simulation results are presented to compare the convergence of the proposed algorithm with least mean square (LMS) algorithm and RLS algorithm. It shows that the proposed new algorithm has comparable convergence speed to the other known adaptive algorithms\",\"PeriodicalId\":257948,\"journal\":{\"name\":\"2007 International Conference on Signal Processing, Communications and Networking\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Signal Processing, Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCN.2007.350719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Signal Processing, Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCN.2007.350719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对FIR自适应滤波器,提出了一种新的变步长快速收敛自适应算法。提出了一种基于准牛顿族的算法。仿真结果比较了该算法与最小均方(LMS)算法和RLS算法的收敛性。结果表明,该算法与其他已知的自适应算法具有相当的收敛速度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Fast Convergence Adaptive Algorithm
In this paper, a new fast convergence adaptive algorithm with variable step size is proposed for FIR adaptive filter. This new proposed algorithm is derived based on the quasi-Newton family. Simulation results are presented to compare the convergence of the proposed algorithm with least mean square (LMS) algorithm and RLS algorithm. It shows that the proposed new algorithm has comparable convergence speed to the other known adaptive algorithms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multilayer Perceptron Neural Network Architecture using VHDL with Combinational Logic Sigmoid Function A Service Time Error Based Scheduling Algorithm for a Computational Grid ASIC Architecture for Implementing Blackman Windowing for Real Time Spectral Analysis FPGA Implementation of Parallel Pipelined Multiplier Less FFT Architecture Based System-On-Chip Design Targetting Multimedia Applications Modified Conservative Staircase Scheme for Video Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1