{"title":"血细胞计白血病细胞群统计的高通量算法","authors":"B. Prasad, Wael Badawy","doi":"10.1109/BIOCAS.2007.4463329","DOIUrl":null,"url":null,"abstract":"This paper presents a high throughput cell count and cluster classification algorithm to quantify population statistics of leukemia cell lines on a conventional hemocytometer. The algorithm has been designed, implemented and tested on test images that vary in image quality. The proposed algorithm uses a recursively segmented, median filtered and a boosted Prewitt gradient mask to generate a boundary box that encloses all the identified cells. Intensity profile plots acting as signature plots further assist in classifying a single isolated cell from a cell cluster. Processed results compared manually by a biological expert resulted in an accuracy of 95 % for even low quality images with a computational time ranging between 8-12sec. Improved performance from the proposed algorithm could be observed when compared with other conventional image analysis tools.","PeriodicalId":273819,"journal":{"name":"2007 IEEE Biomedical Circuits and Systems Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"High Throughput Algorithm for Leukemia Cell Population Statistics on a Hemocytometer\",\"authors\":\"B. Prasad, Wael Badawy\",\"doi\":\"10.1109/BIOCAS.2007.4463329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a high throughput cell count and cluster classification algorithm to quantify population statistics of leukemia cell lines on a conventional hemocytometer. The algorithm has been designed, implemented and tested on test images that vary in image quality. The proposed algorithm uses a recursively segmented, median filtered and a boosted Prewitt gradient mask to generate a boundary box that encloses all the identified cells. Intensity profile plots acting as signature plots further assist in classifying a single isolated cell from a cell cluster. Processed results compared manually by a biological expert resulted in an accuracy of 95 % for even low quality images with a computational time ranging between 8-12sec. Improved performance from the proposed algorithm could be observed when compared with other conventional image analysis tools.\",\"PeriodicalId\":273819,\"journal\":{\"name\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2007.4463329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2007.4463329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Throughput Algorithm for Leukemia Cell Population Statistics on a Hemocytometer
This paper presents a high throughput cell count and cluster classification algorithm to quantify population statistics of leukemia cell lines on a conventional hemocytometer. The algorithm has been designed, implemented and tested on test images that vary in image quality. The proposed algorithm uses a recursively segmented, median filtered and a boosted Prewitt gradient mask to generate a boundary box that encloses all the identified cells. Intensity profile plots acting as signature plots further assist in classifying a single isolated cell from a cell cluster. Processed results compared manually by a biological expert resulted in an accuracy of 95 % for even low quality images with a computational time ranging between 8-12sec. Improved performance from the proposed algorithm could be observed when compared with other conventional image analysis tools.