基于进化混合RBF-MLP网络的肌电信号分类

A. Zalzala, N. Chaiyaratana
{"title":"基于进化混合RBF-MLP网络的肌电信号分类","authors":"A. Zalzala, N. Chaiyaratana","doi":"10.1109/CEC.2000.870365","DOIUrl":null,"url":null,"abstract":"This paper introduces a hybrid neural structure using radial-basis functions (RBF) and multilayer perceptron (MLP) networks. The hybrid network is composed of one RBF network and a number of MLPs, and is trained using a combined genetic/unsupervised/supervised learning algorithm. The genetic and unsupervised learning algorithms are used to locate the centres of the RBF part in the hybrid network. In addition, the supervised learning algorithm, based on a back-propagation algorithm, is used to train the connection weights of the MLP part in the hybrid network. Performances of the hybrid network are initially tested using a two-spiral benchmark problem. Several simulation results are reported for applying the algorithm in the classification of myoelectric or electromyographic (EMG) signals where the GA-based network proved most efficient.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Myoelectric signal classification using evolutionary hybrid RBF-MLP networks\",\"authors\":\"A. Zalzala, N. Chaiyaratana\",\"doi\":\"10.1109/CEC.2000.870365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a hybrid neural structure using radial-basis functions (RBF) and multilayer perceptron (MLP) networks. The hybrid network is composed of one RBF network and a number of MLPs, and is trained using a combined genetic/unsupervised/supervised learning algorithm. The genetic and unsupervised learning algorithms are used to locate the centres of the RBF part in the hybrid network. In addition, the supervised learning algorithm, based on a back-propagation algorithm, is used to train the connection weights of the MLP part in the hybrid network. Performances of the hybrid network are initially tested using a two-spiral benchmark problem. Several simulation results are reported for applying the algorithm in the classification of myoelectric or electromyographic (EMG) signals where the GA-based network proved most efficient.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文介绍了一种基于径向基函数(RBF)和多层感知器(MLP)网络的混合神经网络结构。该混合网络由一个RBF网络和多个mlp网络组成,并使用遗传/无监督/有监督组合学习算法进行训练。采用遗传算法和无监督学习算法对混合网络中RBF部分的中心进行定位。此外,基于反向传播算法的监督学习算法用于训练混合网络中MLP部分的连接权值。采用双螺旋基准问题对混合网络的性能进行了初步测试。在肌电或肌电图(EMG)信号的分类中,基于遗传算法的网络被证明是最有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Myoelectric signal classification using evolutionary hybrid RBF-MLP networks
This paper introduces a hybrid neural structure using radial-basis functions (RBF) and multilayer perceptron (MLP) networks. The hybrid network is composed of one RBF network and a number of MLPs, and is trained using a combined genetic/unsupervised/supervised learning algorithm. The genetic and unsupervised learning algorithms are used to locate the centres of the RBF part in the hybrid network. In addition, the supervised learning algorithm, based on a back-propagation algorithm, is used to train the connection weights of the MLP part in the hybrid network. Performances of the hybrid network are initially tested using a two-spiral benchmark problem. Several simulation results are reported for applying the algorithm in the classification of myoelectric or electromyographic (EMG) signals where the GA-based network proved most efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1