{"title":"使用多架直升机的AWE系统的起飞和降落","authors":"Audrey Schanen, J. Dumon, N. Meslem, A. Hably","doi":"10.23919/ACC45564.2020.9148035","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of take-off and landing of an airborne wind energy system is addressed. The solution explored is to equipe the airborne wing of the system with a multicopter drone in order to perform the take-off and land maneuvers, even in the absence of wind. The proposed model with the proposed control strategy is implemented and tested in a numerical environment. The results show efficiency of the proposed control law and its robustness with respect to modelling errors and wind gusts.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":" 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Take-off and landing of an AWE system using a multicopter\",\"authors\":\"Audrey Schanen, J. Dumon, N. Meslem, A. Hably\",\"doi\":\"10.23919/ACC45564.2020.9148035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of take-off and landing of an airborne wind energy system is addressed. The solution explored is to equipe the airborne wing of the system with a multicopter drone in order to perform the take-off and land maneuvers, even in the absence of wind. The proposed model with the proposed control strategy is implemented and tested in a numerical environment. The results show efficiency of the proposed control law and its robustness with respect to modelling errors and wind gusts.\",\"PeriodicalId\":288450,\"journal\":{\"name\":\"2020 American Control Conference (ACC)\",\"volume\":\" 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC45564.2020.9148035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC45564.2020.9148035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Take-off and landing of an AWE system using a multicopter
In this paper, the problem of take-off and landing of an airborne wind energy system is addressed. The solution explored is to equipe the airborne wing of the system with a multicopter drone in order to perform the take-off and land maneuvers, even in the absence of wind. The proposed model with the proposed control strategy is implemented and tested in a numerical environment. The results show efficiency of the proposed control law and its robustness with respect to modelling errors and wind gusts.