基于高增益多电平逆变器的电能质量增强并网太阳能发电系统

P. C. R. Varma, C. Mukundan, P. Jayaprakash, A. Al‐Durra, T. El-Fouly
{"title":"基于高增益多电平逆变器的电能质量增强并网太阳能发电系统","authors":"P. C. R. Varma, C. Mukundan, P. Jayaprakash, A. Al‐Durra, T. El-Fouly","doi":"10.1109/IECON48115.2021.9589348","DOIUrl":null,"url":null,"abstract":"A high gain multilevel inverter (HGMLI) based solar power transfer system (SPTS) is proposed in this paper. The five-level symmetrical source topology consists of eight semiconductor switches and two non-isolated DC sources. The HGMLI is comprised of a multilevel generator unit and a polarity alternating unit. Four switches in the circuit operate to achieve unipolar multiple levels and another four switches change the alternate polarity to get the desired five-level AC output voltage. Four switches are operated in level-shifted pulse width modulation and the other four are at the fundamental frequency. Moreover, the polarity alternating switches are operated at zero voltage levels to reduce the switching losses. A voltage booster circuit extracts maximum power from the photovoltaic (PV) array and exhibits a high gain in the voltage transformation for obtaining the desired DC-link voltage even for a low input voltage. The MLI is controlled by a second-order generalized integral-based filter to integrate active power to the grid. At the point of common coupling (PCC), a nonlinear harmonic load is connected, and its impact on grid power quality is mitigated by the SPTS operation maintaining within IEEE limits. Hence, maximum power extraction, active power injection, and power quality enhancement are the major objectives of this work. The proposed system performance is validated at different operating conditions with extensive analysis in the MATLAB/Simulink model.","PeriodicalId":443337,"journal":{"name":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","volume":"34 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Gain Multilevel Inverter Based Grid Integrated Solar Power Transfer System with Power Quality Enhancement\",\"authors\":\"P. C. R. Varma, C. Mukundan, P. Jayaprakash, A. Al‐Durra, T. El-Fouly\",\"doi\":\"10.1109/IECON48115.2021.9589348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high gain multilevel inverter (HGMLI) based solar power transfer system (SPTS) is proposed in this paper. The five-level symmetrical source topology consists of eight semiconductor switches and two non-isolated DC sources. The HGMLI is comprised of a multilevel generator unit and a polarity alternating unit. Four switches in the circuit operate to achieve unipolar multiple levels and another four switches change the alternate polarity to get the desired five-level AC output voltage. Four switches are operated in level-shifted pulse width modulation and the other four are at the fundamental frequency. Moreover, the polarity alternating switches are operated at zero voltage levels to reduce the switching losses. A voltage booster circuit extracts maximum power from the photovoltaic (PV) array and exhibits a high gain in the voltage transformation for obtaining the desired DC-link voltage even for a low input voltage. The MLI is controlled by a second-order generalized integral-based filter to integrate active power to the grid. At the point of common coupling (PCC), a nonlinear harmonic load is connected, and its impact on grid power quality is mitigated by the SPTS operation maintaining within IEEE limits. Hence, maximum power extraction, active power injection, and power quality enhancement are the major objectives of this work. The proposed system performance is validated at different operating conditions with extensive analysis in the MATLAB/Simulink model.\",\"PeriodicalId\":443337,\"journal\":{\"name\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"34 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON48115.2021.9589348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON48115.2021.9589348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于高增益多电平逆变器的太阳能电力传输系统(SPTS)。五电平对称源拓扑由八个半导体开关和两个非隔离直流源组成。HGMLI由一个多电平发电机单元和一个极性交流单元组成。电路中的四个开关操作以实现单极多电平,另外四个开关改变交替极性以获得所需的五电平交流输出电压。四个开关以电平移脉宽调制方式工作,另外四个开关在基频下工作。此外,极性交流开关工作在零电压水平,以减少开关损耗。电压升压电路从光伏(PV)阵列提取最大功率,并在电压变换中显示高增益,即使在低输入电压下也能获得所需的直流链路电压。采用二阶广义积分滤波器对系统进行控制,对有功功率进行积分。在共耦合点(PCC)连接非线性谐波负荷,并通过SPTS运行保持在IEEE限制内来减轻其对电网电能质量的影响。因此,最大功率提取,有功功率注入和电能质量的提高是这项工作的主要目标。在MATLAB/Simulink模型中进行了广泛的分析,验证了系统在不同工况下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High Gain Multilevel Inverter Based Grid Integrated Solar Power Transfer System with Power Quality Enhancement
A high gain multilevel inverter (HGMLI) based solar power transfer system (SPTS) is proposed in this paper. The five-level symmetrical source topology consists of eight semiconductor switches and two non-isolated DC sources. The HGMLI is comprised of a multilevel generator unit and a polarity alternating unit. Four switches in the circuit operate to achieve unipolar multiple levels and another four switches change the alternate polarity to get the desired five-level AC output voltage. Four switches are operated in level-shifted pulse width modulation and the other four are at the fundamental frequency. Moreover, the polarity alternating switches are operated at zero voltage levels to reduce the switching losses. A voltage booster circuit extracts maximum power from the photovoltaic (PV) array and exhibits a high gain in the voltage transformation for obtaining the desired DC-link voltage even for a low input voltage. The MLI is controlled by a second-order generalized integral-based filter to integrate active power to the grid. At the point of common coupling (PCC), a nonlinear harmonic load is connected, and its impact on grid power quality is mitigated by the SPTS operation maintaining within IEEE limits. Hence, maximum power extraction, active power injection, and power quality enhancement are the major objectives of this work. The proposed system performance is validated at different operating conditions with extensive analysis in the MATLAB/Simulink model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Extended Phase Shift Modulation for DAB Converter with the Blocking Capacitor An Online Noninvasive Estimation Method of Electrolytic Capacitor for Boost Converters Control of Grid-tied Dual-PV LLC Converter using Adaptive Neuro Fuzzy Interface System (ANFIS) Space Vector Modulation Scheme for Three-Phase Single-Stage SEPIC-Based Grid-Connected Differential Inverter Dynamic Phasor-Based Modeling and Analysis of Dual-Loop Controlled DC-DC Converters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1