通过最优上下文量化的分层建模

A. Krivoulets, Xiaolin Wu
{"title":"通过最优上下文量化的分层建模","authors":"A. Krivoulets, Xiaolin Wu","doi":"10.1109/ICIAP.2003.1234079","DOIUrl":null,"url":null,"abstract":"Optimal context quantization with respect to the minimum conditional entropy (MCECQ) is proven to be an efficient way for high order statistical modeling and model complexity reduction in data compression systems. The MCECQ merges together contexts that have similar statistics to reduce the size of the original model. In this technique, the number of output clusters (the model size) must be set before quantization. Optimal model size for the given data is not usually known in advance. We extend the MCECQ technique to a multi-model approach for context modeling, which overcomes this problem and gives the possibilities for better fitting the model to the actual data. The method is primarily intended for image compression algorithms. In our experiments, we applied the proposed technique to embedded conditional bit-plane entropy coding of wavelet transform coefficients. We show that the performance of the proposed modeling achieves the performance of the optimal model of fixed size found individually for given data using MCECQ (and in most cases it is even slightly better).","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hierarchical modeling via optimal context quantization\",\"authors\":\"A. Krivoulets, Xiaolin Wu\",\"doi\":\"10.1109/ICIAP.2003.1234079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal context quantization with respect to the minimum conditional entropy (MCECQ) is proven to be an efficient way for high order statistical modeling and model complexity reduction in data compression systems. The MCECQ merges together contexts that have similar statistics to reduce the size of the original model. In this technique, the number of output clusters (the model size) must be set before quantization. Optimal model size for the given data is not usually known in advance. We extend the MCECQ technique to a multi-model approach for context modeling, which overcomes this problem and gives the possibilities for better fitting the model to the actual data. The method is primarily intended for image compression algorithms. In our experiments, we applied the proposed technique to embedded conditional bit-plane entropy coding of wavelet transform coefficients. We show that the performance of the proposed modeling achieves the performance of the optimal model of fixed size found individually for given data using MCECQ (and in most cases it is even slightly better).\",\"PeriodicalId\":218076,\"journal\":{\"name\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2003.1234079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于最小条件熵(MCECQ)的最优上下文量化被证明是数据压缩系统中高阶统计建模和降低模型复杂度的有效方法。MCECQ将具有相似统计数据的上下文合并在一起,以减小原始模型的大小。在这种技术中,必须在量化之前设置输出簇的数量(模型大小)。给定数据的最佳模型大小通常事先不知道。我们将MCECQ技术扩展为上下文建模的多模型方法,这克服了这个问题,并提供了更好地将模型拟合到实际数据的可能性。该方法主要用于图像压缩算法。在实验中,我们将该技术应用于小波变换系数的嵌入条件位面熵编码。我们表明,所提出的建模的性能达到了使用MCECQ为给定数据单独找到的固定大小的最佳模型的性能(并且在大多数情况下它甚至略好)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical modeling via optimal context quantization
Optimal context quantization with respect to the minimum conditional entropy (MCECQ) is proven to be an efficient way for high order statistical modeling and model complexity reduction in data compression systems. The MCECQ merges together contexts that have similar statistics to reduce the size of the original model. In this technique, the number of output clusters (the model size) must be set before quantization. Optimal model size for the given data is not usually known in advance. We extend the MCECQ technique to a multi-model approach for context modeling, which overcomes this problem and gives the possibilities for better fitting the model to the actual data. The method is primarily intended for image compression algorithms. In our experiments, we applied the proposed technique to embedded conditional bit-plane entropy coding of wavelet transform coefficients. We show that the performance of the proposed modeling achieves the performance of the optimal model of fixed size found individually for given data using MCECQ (and in most cases it is even slightly better).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification method for colored natural textures using Gabor filtering Perceptive visual texture classification and retrieval Deferring range/domain comparisons in fractal image compression Modeling the world: the virtualization pipeline A graphics hardware implementation of the generalized Hough transform for fast object recognition, scale, and 3D pose detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1