特定领域深度学习特征提取器用于糖尿病足溃疡检测

R. Basiri, M. Popovic, Shehroz S. Khan
{"title":"特定领域深度学习特征提取器用于糖尿病足溃疡检测","authors":"R. Basiri, M. Popovic, Shehroz S. Khan","doi":"10.1109/ICDMW58026.2022.00041","DOIUrl":null,"url":null,"abstract":"Diabetic Foot Ulcer (DFU) is a condition requiring constant monitoring and evaluations for treatment. DFU patient population is on the rise and will soon outpace the available health resources. Autonomous monitoring and evaluation of DFU wounds is a much-needed area in health care. In this paper, we evaluate and identify the most accurate feature extractor that is the core basis for developing a deep learning wound detection network. For the evaluation, we used mAP and F1-score on the publicly available DFU2020 dataset. A combination of UNet and EfficientNetb3 feature extractor resulted in the best evaluation among the 14 networks compared. UNet and Efficientnetb3 can be used as the classifier in the development of a comprehensive DFU domain-specific autonomous wound detection pipeline.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain-Specific Deep Learning Feature Extractor for Diabetic Foot Ulcer Detection\",\"authors\":\"R. Basiri, M. Popovic, Shehroz S. Khan\",\"doi\":\"10.1109/ICDMW58026.2022.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic Foot Ulcer (DFU) is a condition requiring constant monitoring and evaluations for treatment. DFU patient population is on the rise and will soon outpace the available health resources. Autonomous monitoring and evaluation of DFU wounds is a much-needed area in health care. In this paper, we evaluate and identify the most accurate feature extractor that is the core basis for developing a deep learning wound detection network. For the evaluation, we used mAP and F1-score on the publicly available DFU2020 dataset. A combination of UNet and EfficientNetb3 feature extractor resulted in the best evaluation among the 14 networks compared. UNet and Efficientnetb3 can be used as the classifier in the development of a comprehensive DFU domain-specific autonomous wound detection pipeline.\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病足溃疡(DFU)是一种需要持续监测和评估治疗的疾病。DFU患者人数正在上升,并将很快超过现有的卫生资源。DFU伤口的自主监测和评估是医疗保健中急需的一个领域。在本文中,我们评估和识别最准确的特征提取器,这是开发深度学习伤口检测网络的核心基础。为了进行评估,我们在公开的DFU2020数据集上使用了mAP和F1-score。UNet和effentnetb3特征提取器的组合在14个网络中获得了最好的评价。UNet和Efficientnetb3可以作为分类器用于开发全面的DFU领域自主伤口检测管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Domain-Specific Deep Learning Feature Extractor for Diabetic Foot Ulcer Detection
Diabetic Foot Ulcer (DFU) is a condition requiring constant monitoring and evaluations for treatment. DFU patient population is on the rise and will soon outpace the available health resources. Autonomous monitoring and evaluation of DFU wounds is a much-needed area in health care. In this paper, we evaluate and identify the most accurate feature extractor that is the core basis for developing a deep learning wound detection network. For the evaluation, we used mAP and F1-score on the publicly available DFU2020 dataset. A combination of UNet and EfficientNetb3 feature extractor resulted in the best evaluation among the 14 networks compared. UNet and Efficientnetb3 can be used as the classifier in the development of a comprehensive DFU domain-specific autonomous wound detection pipeline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1