基于灰狼优化算法的光梯度增强机特征选择

Felix Indra Kumiadi, Ajeng Wulandari, S. Arifin
{"title":"基于灰狼优化算法的光梯度增强机特征选择","authors":"Felix Indra Kumiadi, Ajeng Wulandari, S. Arifin","doi":"10.1109/iccosite57641.2023.10127801","DOIUrl":null,"url":null,"abstract":"high dimensional data provide a major problem to supervised learning. In identifying high dimensional data, the learning models usually exhibit overfitting and become less understandable. One way to find the ideal features on high-dimensional data implemented feature selection on dataset Feature selection is one of the crucial aspects on data preprocessing step. Several algorithms for feature selection were proposed over the decades such as wrapper method, filter, and embedded method. In this research, we implemented wrapper method with Grey Wolf Optimization. We implemented Grey Wolf Optimization on wrapper method because the algorithm is efficient, simple and had lower computational time. We are also compared Grey Wolf Optimization to other meta-heuristic algorithms such as Particle Swarm Optimization and Genetic Algorithms. The result showed the GWO provide better computational time with the average time from four different dataset was 6.1125s. The accuracy result showed the GWO performed better on Ionosphere dataset.","PeriodicalId":256184,"journal":{"name":"2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE)","volume":"30 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Selection using Grey Wolf Optimization Algorithm on Light Gradient Boosting Machine\",\"authors\":\"Felix Indra Kumiadi, Ajeng Wulandari, S. Arifin\",\"doi\":\"10.1109/iccosite57641.2023.10127801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"high dimensional data provide a major problem to supervised learning. In identifying high dimensional data, the learning models usually exhibit overfitting and become less understandable. One way to find the ideal features on high-dimensional data implemented feature selection on dataset Feature selection is one of the crucial aspects on data preprocessing step. Several algorithms for feature selection were proposed over the decades such as wrapper method, filter, and embedded method. In this research, we implemented wrapper method with Grey Wolf Optimization. We implemented Grey Wolf Optimization on wrapper method because the algorithm is efficient, simple and had lower computational time. We are also compared Grey Wolf Optimization to other meta-heuristic algorithms such as Particle Swarm Optimization and Genetic Algorithms. The result showed the GWO provide better computational time with the average time from four different dataset was 6.1125s. The accuracy result showed the GWO performed better on Ionosphere dataset.\",\"PeriodicalId\":256184,\"journal\":{\"name\":\"2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE)\",\"volume\":\"30 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccosite57641.2023.10127801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccosite57641.2023.10127801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高维数据是监督学习的一个主要问题。在识别高维数据时,学习模型通常表现为过度拟合,变得难以理解。在数据集上进行特征选择是在高维数据上寻找理想特征的一种方法。几十年来,人们提出了几种特征选择算法,如包装法、滤波法和嵌入法。在本研究中,我们使用灰狼优化实现包装方法。由于灰狼优化算法高效、简单、计算时间短,我们在包装方法上实现了灰狼优化。我们还比较了灰狼优化与其他元启发式算法,如粒子群优化和遗传算法。结果表明,GWO提供了更好的计算时间,四个不同数据集的平均时间为6.1125s。结果表明,GWO在电离层数据集上具有较好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature Selection using Grey Wolf Optimization Algorithm on Light Gradient Boosting Machine
high dimensional data provide a major problem to supervised learning. In identifying high dimensional data, the learning models usually exhibit overfitting and become less understandable. One way to find the ideal features on high-dimensional data implemented feature selection on dataset Feature selection is one of the crucial aspects on data preprocessing step. Several algorithms for feature selection were proposed over the decades such as wrapper method, filter, and embedded method. In this research, we implemented wrapper method with Grey Wolf Optimization. We implemented Grey Wolf Optimization on wrapper method because the algorithm is efficient, simple and had lower computational time. We are also compared Grey Wolf Optimization to other meta-heuristic algorithms such as Particle Swarm Optimization and Genetic Algorithms. The result showed the GWO provide better computational time with the average time from four different dataset was 6.1125s. The accuracy result showed the GWO performed better on Ionosphere dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Customer Relationship Management, Customer Retention, and the Mediating Role of Customer Satisfaction on a Healthcare Mobile Applications Revalidating the Encoder-Decoder Depths and Activation Function to Find Optimum Vanilla Transformer Model Goertzel Algorithm Design on Field Programmable Gate Arrays For Implementing Electric Power Measurement Instagram vs TikTok: Which Engage Best for Consumer Brand Engagement for Social Commerce and Purchase Intention? Air Pollution Prediction using Random Forest Classifier: A Case Study of DKI Jakarta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1