27.2具有541%能量提取增益的压电采集中改进的最大功率点跟踪的绝热感应和整流器

Yimai Peng, K. Choo, Sechang Oh, Inhee Lee, Taekwang Jang, Yejoong Kim, Jongyup Lim, D. Blaauw, D. Sylvester
{"title":"27.2具有541%能量提取增益的压电采集中改进的最大功率点跟踪的绝热感应和整流器","authors":"Yimai Peng, K. Choo, Sechang Oh, Inhee Lee, Taekwang Jang, Yejoong Kim, Jongyup Lim, D. Blaauw, D. Sylvester","doi":"10.1109/ISSCC.2019.8662341","DOIUrl":null,"url":null,"abstract":"Piezoelectric energy harvesters (PEHs) convert mechanical energy from vibrations into electrical energy. They have become popular in energy-autonomous IoT systems. However.’ the total energy extracted by a PEH is highly sensitive to matching between the PEH impedance and the energy extraction circuit. Prior solutions include the use of a full-bridge rectifier (FBR) and a so-called synchronous electric-charge extraction (SECE) [1], and are suitable for non-periodic vibrations. However, their extraction efficiency is low since the large internal capacitance $C_{\\mathrm {p}}$ (usually 10’s of nF) of the PEH (Fig. 27.2.1) prevents the output voltage from reaching its maximum power point (MPP) under a typical sinusoidal and transient excitation $(V_{\\mathrm {M}\\mathrm {P}\\mathrm {P}}={1/2}\\cdot l_{\\mathrm {p}}R_{\\mathrm {p}})$. A recently proposed technique [2], [3], [4], called bias-flip, achieves a higher extraction efficiency by forcing a predetermined constant voltage at the PEH output, $V_{\\mathrm {p}}$, which is then flipped every half-period of the assumed sinusoidal excitation (Fig. 27.2.1, top left). To flip $V_{\\mathrm {p}},$ the energy in capacitor $C_{\\mathrm {p}}$ is extracted using either a large external inductor [2], [3] or capacitor arrays [4]. It is then restored with the opposite polarity (Fig. 27.2.1, top). However, $V_{\\mathrm {M}\\mathrm {P}\\mathrm {P}}$ of the PEH varies with sinusoidal current /.’ hence, the two fixed values of $V_{\\mathrm {p}}$ in the flip-bias technique either over-or underestimate $V_{\\mathrm {M}\\mathrm {P}\\mathrm {P}}$ for much of the oscillation cycle (pattern filled regions in Fig. 27.2.1, top right). In addition, none of the prior approaches compensate for $V_{\\mathrm {M}\\mathrm {P}\\mathrm {P}}$-waveform amplitude changes, due to input intensity variations or decaying oscillations after an impulse, further degrading efficiency.","PeriodicalId":265551,"journal":{"name":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","volume":"11 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"27.2 An Adiabatic Sense and Set Rectifier for Improved Maximum-Power-Point Tracking in Piezoelectric Harvesting with 541% Energy Extraction Gain\",\"authors\":\"Yimai Peng, K. Choo, Sechang Oh, Inhee Lee, Taekwang Jang, Yejoong Kim, Jongyup Lim, D. Blaauw, D. Sylvester\",\"doi\":\"10.1109/ISSCC.2019.8662341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piezoelectric energy harvesters (PEHs) convert mechanical energy from vibrations into electrical energy. They have become popular in energy-autonomous IoT systems. However.’ the total energy extracted by a PEH is highly sensitive to matching between the PEH impedance and the energy extraction circuit. Prior solutions include the use of a full-bridge rectifier (FBR) and a so-called synchronous electric-charge extraction (SECE) [1], and are suitable for non-periodic vibrations. However, their extraction efficiency is low since the large internal capacitance $C_{\\\\mathrm {p}}$ (usually 10’s of nF) of the PEH (Fig. 27.2.1) prevents the output voltage from reaching its maximum power point (MPP) under a typical sinusoidal and transient excitation $(V_{\\\\mathrm {M}\\\\mathrm {P}\\\\mathrm {P}}={1/2}\\\\cdot l_{\\\\mathrm {p}}R_{\\\\mathrm {p}})$. A recently proposed technique [2], [3], [4], called bias-flip, achieves a higher extraction efficiency by forcing a predetermined constant voltage at the PEH output, $V_{\\\\mathrm {p}}$, which is then flipped every half-period of the assumed sinusoidal excitation (Fig. 27.2.1, top left). To flip $V_{\\\\mathrm {p}},$ the energy in capacitor $C_{\\\\mathrm {p}}$ is extracted using either a large external inductor [2], [3] or capacitor arrays [4]. It is then restored with the opposite polarity (Fig. 27.2.1, top). However, $V_{\\\\mathrm {M}\\\\mathrm {P}\\\\mathrm {P}}$ of the PEH varies with sinusoidal current /.’ hence, the two fixed values of $V_{\\\\mathrm {p}}$ in the flip-bias technique either over-or underestimate $V_{\\\\mathrm {M}\\\\mathrm {P}\\\\mathrm {P}}$ for much of the oscillation cycle (pattern filled regions in Fig. 27.2.1, top right). In addition, none of the prior approaches compensate for $V_{\\\\mathrm {M}\\\\mathrm {P}\\\\mathrm {P}}$-waveform amplitude changes, due to input intensity variations or decaying oscillations after an impulse, further degrading efficiency.\",\"PeriodicalId\":265551,\"journal\":{\"name\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"volume\":\"11 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2019.8662341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2019.8662341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

压电能量收集器(PEHs)将振动产生的机械能转化为电能。它们在能源自主物联网系统中变得很受欢迎。然而。PEH提取的总能量对PEH阻抗与能量提取电路的匹配高度敏感。先前的解决方案包括使用全桥整流器(FBR)和所谓的同步电荷提取(SECE)[1],并且适用于非周期振动。然而,由于PEH(图27.2.1)的大内部电容$C_{\mathrm {p}}$(通常为10 's nF)阻止了输出电压在典型的正弦和瞬态激励$(V_{\mathrm {M}\mathrm {p}} ={1/2}\cdot l_{\mathrm {p}}R_{\mathrm {p}})$下达到最大功率点(MPP),因此它们的提取效率很低。最近提出的一种技术[2],[3],[4],称为偏置翻转,通过在PEH输出$V_{\ mathm {p}}$上施加预定的恒定电压,然后在假设的正弦激励的每半个周期翻转一次,从而实现更高的提取效率(图27.2.1,左上)。为了翻转$V_{\mathrm {p}},$电容器$C_{\mathrm {p}}$中的能量使用大型外部电感器[2],[3]或电容器阵列[4]来提取。然后,它被恢复为相反的极性(图27.2.1,顶部)。然而,PEH的$V_{\mathrm {M}\mathrm {P}\mathrm {P}}$随正弦电流/而变化。因此,翻转偏置技术中$V_{\ mathm {p}}$的两个固定值在大部分振荡周期中要么过高要么过低$V_{\ mathm {M}\ mathm {p} \ mathm {p}}$(图27.2.1中的模式填充区域,右上方)。此外,之前的方法都无法补偿由于输入强度变化或脉冲后振荡衰减而导致的$V_{\mathrm {M}\mathrm {P}\mathrm {P}}$-波形幅度变化,从而进一步降低效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
27.2 An Adiabatic Sense and Set Rectifier for Improved Maximum-Power-Point Tracking in Piezoelectric Harvesting with 541% Energy Extraction Gain
Piezoelectric energy harvesters (PEHs) convert mechanical energy from vibrations into electrical energy. They have become popular in energy-autonomous IoT systems. However.’ the total energy extracted by a PEH is highly sensitive to matching between the PEH impedance and the energy extraction circuit. Prior solutions include the use of a full-bridge rectifier (FBR) and a so-called synchronous electric-charge extraction (SECE) [1], and are suitable for non-periodic vibrations. However, their extraction efficiency is low since the large internal capacitance $C_{\mathrm {p}}$ (usually 10’s of nF) of the PEH (Fig. 27.2.1) prevents the output voltage from reaching its maximum power point (MPP) under a typical sinusoidal and transient excitation $(V_{\mathrm {M}\mathrm {P}\mathrm {P}}={1/2}\cdot l_{\mathrm {p}}R_{\mathrm {p}})$. A recently proposed technique [2], [3], [4], called bias-flip, achieves a higher extraction efficiency by forcing a predetermined constant voltage at the PEH output, $V_{\mathrm {p}}$, which is then flipped every half-period of the assumed sinusoidal excitation (Fig. 27.2.1, top left). To flip $V_{\mathrm {p}},$ the energy in capacitor $C_{\mathrm {p}}$ is extracted using either a large external inductor [2], [3] or capacitor arrays [4]. It is then restored with the opposite polarity (Fig. 27.2.1, top). However, $V_{\mathrm {M}\mathrm {P}\mathrm {P}}$ of the PEH varies with sinusoidal current /.’ hence, the two fixed values of $V_{\mathrm {p}}$ in the flip-bias technique either over-or underestimate $V_{\mathrm {M}\mathrm {P}\mathrm {P}}$ for much of the oscillation cycle (pattern filled regions in Fig. 27.2.1, top right). In addition, none of the prior approaches compensate for $V_{\mathrm {M}\mathrm {P}\mathrm {P}}$-waveform amplitude changes, due to input intensity variations or decaying oscillations after an impulse, further degrading efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
27.2 An Adiabatic Sense and Set Rectifier for Improved Maximum-Power-Point Tracking in Piezoelectric Harvesting with 541% Energy Extraction Gain 22.7 A Programmable Wireless EEG Monitoring SoC with Open/Closed-Loop Optogenetic and Electrical Stimulation for Epilepsy Control 2.5 A 40×40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control 11.2 A CMOS Biosensor Array with 1024 3-Electrode Voltammetry Pixels and 93dB Dynamic Range 11.3 A Capacitive Biosensor for Cancer Diagnosis Using a Functionalized Microneedle and a 13.7b-Resolution Capacitance-to-Digital Converter from 1 to 100nF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1