Ben Wellner, J. Pustejovsky, Catherine Havasi, Anna Rumshisky, R. Saurí
{"title":"语篇连贯关系分类:基于多知识来源的探索性研究","authors":"Ben Wellner, J. Pustejovsky, Catherine Havasi, Anna Rumshisky, R. Saurí","doi":"10.3115/1654595.1654618","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of identifying and classifying discourse coherence relations. We report initial results over the recently released Discourse GraphBank (Wolf and Gibson, 2005). Our approach considers, and determines the contributions of, a variety of syntactic and lexico-semantic features. We achieve 81% accuracy on the task of discourse relation type classification and 70% accuracy on relation identification.","PeriodicalId":426429,"journal":{"name":"SIGDIAL Workshop","volume":"81 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"Classification of Discourse Coherence Relations: An Exploratory Study using Multiple Knowledge Sources\",\"authors\":\"Ben Wellner, J. Pustejovsky, Catherine Havasi, Anna Rumshisky, R. Saurí\",\"doi\":\"10.3115/1654595.1654618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the problem of identifying and classifying discourse coherence relations. We report initial results over the recently released Discourse GraphBank (Wolf and Gibson, 2005). Our approach considers, and determines the contributions of, a variety of syntactic and lexico-semantic features. We achieve 81% accuracy on the task of discourse relation type classification and 70% accuracy on relation identification.\",\"PeriodicalId\":426429,\"journal\":{\"name\":\"SIGDIAL Workshop\",\"volume\":\"81 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGDIAL Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1654595.1654618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGDIAL Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1654595.1654618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81
摘要
本文主要研究语篇连贯关系的识别和分类问题。我们报告了最近发布的Discourse GraphBank的初步结果(Wolf and Gibson, 2005)。我们的方法考虑并决定了各种句法和词汇语义特征的贡献。我们在篇章关系类型分类任务上达到了81%的准确率,在关系识别任务上达到了70%的准确率。
Classification of Discourse Coherence Relations: An Exploratory Study using Multiple Knowledge Sources
In this paper we consider the problem of identifying and classifying discourse coherence relations. We report initial results over the recently released Discourse GraphBank (Wolf and Gibson, 2005). Our approach considers, and determines the contributions of, a variety of syntactic and lexico-semantic features. We achieve 81% accuracy on the task of discourse relation type classification and 70% accuracy on relation identification.