高效嵌入式处理器的寄存器指针体系结构

Jongsoo Park, Sung-Boem Park, J. Balfour, D. Black-Schaffer, C. Kozyrakis, W. Dally
{"title":"高效嵌入式处理器的寄存器指针体系结构","authors":"Jongsoo Park, Sung-Boem Park, J. Balfour, D. Black-Schaffer, C. Kozyrakis, W. Dally","doi":"10.1109/DATE.2007.364659","DOIUrl":null,"url":null,"abstract":"Conventional register file architectures cannot optimally exploit temporal locality in data references due to their limited capacity and static encoding of register addresses in instructions. In conventional embedded architectures, the register file capacity cannot be increased without resorting to longer instruction words. Similarly, loop unrolling is often required to exploit locality in the register file accesses across iterations because naming registers statically is inflexible. Both optimizations lead to significant code size increases, which is undesirable in embedded systems. In this paper, the authors introduce the register pointer architecture (RPA), which allows registers to be accessed indirectly through register pointers. Indirection allows a larger register file to be used without increasing the length of instruction words. Additional register file capacity allows many loads and stores, such as those introduced by spill code, to be eliminated, which improves performance and reduces energy consumption. Moreover, indirection affords additional flexibility in naming registers, which reduces the need to apply loop unrolling in order to maximize reuse of register allocated variables","PeriodicalId":298961,"journal":{"name":"2007 Design, Automation & Test in Europe Conference & Exhibition","volume":"500 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Register Pointer Architecture for Efficient Embedded Processors\",\"authors\":\"Jongsoo Park, Sung-Boem Park, J. Balfour, D. Black-Schaffer, C. Kozyrakis, W. Dally\",\"doi\":\"10.1109/DATE.2007.364659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional register file architectures cannot optimally exploit temporal locality in data references due to their limited capacity and static encoding of register addresses in instructions. In conventional embedded architectures, the register file capacity cannot be increased without resorting to longer instruction words. Similarly, loop unrolling is often required to exploit locality in the register file accesses across iterations because naming registers statically is inflexible. Both optimizations lead to significant code size increases, which is undesirable in embedded systems. In this paper, the authors introduce the register pointer architecture (RPA), which allows registers to be accessed indirectly through register pointers. Indirection allows a larger register file to be used without increasing the length of instruction words. Additional register file capacity allows many loads and stores, such as those introduced by spill code, to be eliminated, which improves performance and reduces energy consumption. Moreover, indirection affords additional flexibility in naming registers, which reduces the need to apply loop unrolling in order to maximize reuse of register allocated variables\",\"PeriodicalId\":298961,\"journal\":{\"name\":\"2007 Design, Automation & Test in Europe Conference & Exhibition\",\"volume\":\"500 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Design, Automation & Test in Europe Conference & Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2007.364659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Design, Automation & Test in Europe Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2007.364659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

传统的寄存器文件体系结构由于其有限的容量和指令中寄存器地址的静态编码而不能最佳地利用数据引用中的时间局部性。在传统的嵌入式体系结构中,如果不使用更长的指令字,寄存器文件的容量就无法增加。类似地,循环展开通常需要利用跨迭代的寄存器文件访问中的局部性,因为静态命名寄存器是不灵活的。这两种优化都会导致代码大小的显著增加,这在嵌入式系统中是不希望出现的。在本文中,作者介绍了寄存器指针体系结构(RPA),它允许通过寄存器指针间接访问寄存器。间接允许在不增加指令字长度的情况下使用更大的寄存器文件。额外的寄存器文件容量允许消除许多负载和存储,例如由溢出代码引入的负载和存储,从而提高性能并降低能耗。此外,间接在命名寄存器方面提供了额外的灵活性,这减少了为了最大限度地重用寄存器分配的变量而应用循环展开的需要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Register Pointer Architecture for Efficient Embedded Processors
Conventional register file architectures cannot optimally exploit temporal locality in data references due to their limited capacity and static encoding of register addresses in instructions. In conventional embedded architectures, the register file capacity cannot be increased without resorting to longer instruction words. Similarly, loop unrolling is often required to exploit locality in the register file accesses across iterations because naming registers statically is inflexible. Both optimizations lead to significant code size increases, which is undesirable in embedded systems. In this paper, the authors introduce the register pointer architecture (RPA), which allows registers to be accessed indirectly through register pointers. Indirection allows a larger register file to be used without increasing the length of instruction words. Additional register file capacity allows many loads and stores, such as those introduced by spill code, to be eliminated, which improves performance and reduces energy consumption. Moreover, indirection affords additional flexibility in naming registers, which reduces the need to apply loop unrolling in order to maximize reuse of register allocated variables
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization-based Wideband Basis Functions for Efficient Interconnect Extraction System Level Assessment of an Optical NoC in an MPSoC Platform Modeling and Simulation to the Design of ΣΔ Fractional-N Frequency Synthesizer Tool-support for the analysis of hybrid systems and models Development of an ASIP Enabling Flows in Ethernet Access Using a Retargetable Compilation Flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1