关系结构匹配的高阶注意力转移网络

K. R. Miller, P. Zunde
{"title":"关系结构匹配的高阶注意力转移网络","authors":"K. R. Miller, P. Zunde","doi":"10.1109/IJCNN.1992.227270","DOIUrl":null,"url":null,"abstract":"The Hopfield-Tank optimization network has been applied to the model-image matching problem in computer vision using a graph matching formulation. However, the network has been criticized for unreliable convergence to feasible solutions and for poor solution quality, and the graph matching formulation is unable to represent matching problems with multiple object types, and multiple relations, and high-order relations. The Hopfield-Tank network dynamics is generalized to provide a basis for reliable convergence to feasible solutions, for finding high-quality solutions, and for solving a broad class of optimization problems. The extensions include a new technique called attention-shifting, the introduction of high-order connections in the network, and relaxation of the unit hypercube restriction.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-order attention-shifting networks for relational structure matching\",\"authors\":\"K. R. Miller, P. Zunde\",\"doi\":\"10.1109/IJCNN.1992.227270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hopfield-Tank optimization network has been applied to the model-image matching problem in computer vision using a graph matching formulation. However, the network has been criticized for unreliable convergence to feasible solutions and for poor solution quality, and the graph matching formulation is unable to represent matching problems with multiple object types, and multiple relations, and high-order relations. The Hopfield-Tank network dynamics is generalized to provide a basis for reliable convergence to feasible solutions, for finding high-quality solutions, and for solving a broad class of optimization problems. The extensions include a new technique called attention-shifting, the introduction of high-order connections in the network, and relaxation of the unit hypercube restriction.<<ETX>>\",\"PeriodicalId\":286849,\"journal\":{\"name\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1992.227270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将Hopfield-Tank优化网络应用于计算机视觉中的模型-图像匹配问题。然而,该网络收敛到可行解不可靠,解质量差,图匹配公式无法表示具有多对象类型、多关系和高阶关系的匹配问题。对Hopfield-Tank网络动力学进行了推广,为可靠收敛到可行解、寻找高质量解以及求解广泛的优化问题提供了基础。这些扩展包括一种称为注意力转移的新技术,在网络中引入高阶连接,以及放宽单位超立方体限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-order attention-shifting networks for relational structure matching
The Hopfield-Tank optimization network has been applied to the model-image matching problem in computer vision using a graph matching formulation. However, the network has been criticized for unreliable convergence to feasible solutions and for poor solution quality, and the graph matching formulation is unable to represent matching problems with multiple object types, and multiple relations, and high-order relations. The Hopfield-Tank network dynamics is generalized to provide a basis for reliable convergence to feasible solutions, for finding high-quality solutions, and for solving a broad class of optimization problems. The extensions include a new technique called attention-shifting, the introduction of high-order connections in the network, and relaxation of the unit hypercube restriction.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear system identification using diagonal recurrent neural networks Why error measures are sub-optimal for training neural network pattern classifiers Fuzzy clustering using fuzzy competitive learning networks Design and development of a real-time neural processor using the Intel 80170NX ETANN Precision analysis of stochastic pulse encoding algorithms for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1