使用级联森林模板从单个RGB图像快速6D姿势

Enrique Muñoz, Yoshinori Konishi, C. Beltran, Vittorio Murino, A. D. Bue
{"title":"使用级联森林模板从单个RGB图像快速6D姿势","authors":"Enrique Muñoz, Yoshinori Konishi, C. Beltran, Vittorio Murino, A. D. Bue","doi":"10.1109/IROS.2016.7759598","DOIUrl":null,"url":null,"abstract":"This paper presents a method for 6D pose estimation from a single RGB image for complex texture-less objects. This class of objects are common in any environment but still challenging to deal with. This is due to the fact that the distribution of surface brightness makes difficult to compute interest points or appearance-based descriptors. Here we propose a novel part-based method using an efficient template matching approach where each template independently encodes the similarity function using a Forest trained over the templates. Moreover, accuracy is even more incremented by using a cascade of the learned forest. These templates forests together with the simplicity of the computed image features allow a quick estimate of the pose achieving real-time performance. Performance are demonstrated both on synthetic and real images with known ground truth.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Fast 6D pose from a single RGB image using Cascaded Forests Templates\",\"authors\":\"Enrique Muñoz, Yoshinori Konishi, C. Beltran, Vittorio Murino, A. D. Bue\",\"doi\":\"10.1109/IROS.2016.7759598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for 6D pose estimation from a single RGB image for complex texture-less objects. This class of objects are common in any environment but still challenging to deal with. This is due to the fact that the distribution of surface brightness makes difficult to compute interest points or appearance-based descriptors. Here we propose a novel part-based method using an efficient template matching approach where each template independently encodes the similarity function using a Forest trained over the templates. Moreover, accuracy is even more incremented by using a cascade of the learned forest. These templates forests together with the simplicity of the computed image features allow a quick estimate of the pose achieving real-time performance. Performance are demonstrated both on synthetic and real images with known ground truth.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种基于单幅RGB图像的复杂无纹理物体的6D姿态估计方法。这类对象在任何环境中都很常见,但处理起来仍然具有挑战性。这是由于表面亮度的分布使得计算兴趣点或基于外观的描述符变得困难。在这里,我们提出了一种新的基于零件的方法,使用有效的模板匹配方法,其中每个模板使用在模板上训练的Forest独立编码相似函数。此外,通过使用学习森林的级联,精度甚至得到了更多的提高。这些模板森林加上简单的计算图像特征,可以快速估计实现实时性能的姿势。在已知地面真值的合成图像和真实图像上验证了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast 6D pose from a single RGB image using Cascaded Forests Templates
This paper presents a method for 6D pose estimation from a single RGB image for complex texture-less objects. This class of objects are common in any environment but still challenging to deal with. This is due to the fact that the distribution of surface brightness makes difficult to compute interest points or appearance-based descriptors. Here we propose a novel part-based method using an efficient template matching approach where each template independently encodes the similarity function using a Forest trained over the templates. Moreover, accuracy is even more incremented by using a cascade of the learned forest. These templates forests together with the simplicity of the computed image features allow a quick estimate of the pose achieving real-time performance. Performance are demonstrated both on synthetic and real images with known ground truth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A passivity-based admittance control design using feedback interconnections Performance comparison of Wave Variable Transformation and Time Domain Passivity Approaches for time-delayed teleoperation: Preliminary results Iterative path optimisation for personalised dressing assistance using vision and force information Hand-eye calibration for robotic assisted minimally invasive surgery without a calibration object Modelling and dynamic analysis of underactuated capsule systems with friction-induced hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1