sdn数据中心网络中基于类的流调度框架

Maiass Zaher, Aymen Hasan Alawadi, S. Molnár
{"title":"sdn数据中心网络中基于类的流调度框架","authors":"Maiass Zaher, Aymen Hasan Alawadi, S. Molnár","doi":"10.1109/iCCECE49321.2020.9231052","DOIUrl":null,"url":null,"abstract":"The emerging technologies leveraging Data Center Networks (DCN) and their consequent traffic patterns impose more necessity for improving Quality of Service (QoS). In this paper, we propose Sieve, a new distributed SDN framework that efficiently schedules flows based on the available bandwidth to improve Flow Completion Time (FCT) of mice flows. In addition, we propose a lightweight sampling mechanism to sample a portion of flows. In particular, Sieve schedules the sampled flows, and it reschedules only elephant flows upon threshold hits. Furthermore, our framework allocates a portion of the flows to ECMP, so that the associated overhead can be mitigated in the control plane and ECMP-related packet collisions are fewer as well. Mininet has been used to evaluate the proposed solution, and Sieve provides better FCT up to 50% in comparison to the existing solutions like ECMP and Hedera.","PeriodicalId":413847,"journal":{"name":"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Class-based Flow Scheduling Framework in SDN-based Data Center Networks\",\"authors\":\"Maiass Zaher, Aymen Hasan Alawadi, S. Molnár\",\"doi\":\"10.1109/iCCECE49321.2020.9231052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emerging technologies leveraging Data Center Networks (DCN) and their consequent traffic patterns impose more necessity for improving Quality of Service (QoS). In this paper, we propose Sieve, a new distributed SDN framework that efficiently schedules flows based on the available bandwidth to improve Flow Completion Time (FCT) of mice flows. In addition, we propose a lightweight sampling mechanism to sample a portion of flows. In particular, Sieve schedules the sampled flows, and it reschedules only elephant flows upon threshold hits. Furthermore, our framework allocates a portion of the flows to ECMP, so that the associated overhead can be mitigated in the control plane and ECMP-related packet collisions are fewer as well. Mininet has been used to evaluate the proposed solution, and Sieve provides better FCT up to 50% in comparison to the existing solutions like ECMP and Hedera.\",\"PeriodicalId\":413847,\"journal\":{\"name\":\"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iCCECE49321.2020.9231052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCCECE49321.2020.9231052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用数据中心网络(DCN)的新兴技术及其随之而来的流量模式对提高服务质量(QoS)提出了更大的必要性。在本文中,我们提出了一种新的分布式SDN框架Sieve,该框架基于可用带宽有效地调度流量,以提高流量完成时间(Flow Completion Time, FCT)。此外,我们提出了一种轻量级的采样机制来对一部分流进行采样。特别地,Sieve调度采样流,它只在达到阈值时重新调度大象流。此外,我们的框架将一部分流分配给ECMP,这样可以减轻控制平面中的相关开销,并且与ECMP相关的数据包冲突也更少。Mininet已经被用来评估提议的解决方案,与现有的解决方案(如ECMP和Hedera)相比,Sieve提供了更好的FCT,高达50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Class-based Flow Scheduling Framework in SDN-based Data Center Networks
The emerging technologies leveraging Data Center Networks (DCN) and their consequent traffic patterns impose more necessity for improving Quality of Service (QoS). In this paper, we propose Sieve, a new distributed SDN framework that efficiently schedules flows based on the available bandwidth to improve Flow Completion Time (FCT) of mice flows. In addition, we propose a lightweight sampling mechanism to sample a portion of flows. In particular, Sieve schedules the sampled flows, and it reschedules only elephant flows upon threshold hits. Furthermore, our framework allocates a portion of the flows to ECMP, so that the associated overhead can be mitigated in the control plane and ECMP-related packet collisions are fewer as well. Mininet has been used to evaluate the proposed solution, and Sieve provides better FCT up to 50% in comparison to the existing solutions like ECMP and Hedera.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Key-Value Store using High Level Synthesis Flow for Securities Trading System Design and Analysis of Fractional-Order PID Controller and its variants for Nonlinear Process using Kalman Filter A CMOS Current Starved VCO for Energy Harvesting applications Iris Recognition Performance Analysis for Noncooperative Conditions Effect of Preprocessing on Performance of Neural Networks for Microscopy Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1