基于SCADA数据分析的风电齿轮箱故障监测

Long Wang, Huan Long, Zijun Zhang, Jia Xu, Ruihua Liu
{"title":"基于SCADA数据分析的风电齿轮箱故障监测","authors":"Long Wang, Huan Long, Zijun Zhang, Jia Xu, Ruihua Liu","doi":"10.1109/PESGM.2016.7741571","DOIUrl":null,"url":null,"abstract":"A model for monitoring the wind turbine gearbox based on Supervisory Control and Data Acquisition (SCADA) data is developed. A deep neural network (DNN) is trained with the data of normal gearboxes to predict its performance. The developed DNN model is next tested with data of the normal and abnormal gearboxes. The abnormal behavior of the gearbox can be detected by the statistical process control charts via the fitting error. The capacity of the monitoring model for detecting the abnormal behavior of gearbox is validated by two gearbox failure cases.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Wind turbine gearbox failure monitoring based on SCADA data analysis\",\"authors\":\"Long Wang, Huan Long, Zijun Zhang, Jia Xu, Ruihua Liu\",\"doi\":\"10.1109/PESGM.2016.7741571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model for monitoring the wind turbine gearbox based on Supervisory Control and Data Acquisition (SCADA) data is developed. A deep neural network (DNN) is trained with the data of normal gearboxes to predict its performance. The developed DNN model is next tested with data of the normal and abnormal gearboxes. The abnormal behavior of the gearbox can be detected by the statistical process control charts via the fitting error. The capacity of the monitoring model for detecting the abnormal behavior of gearbox is validated by two gearbox failure cases.\",\"PeriodicalId\":155315,\"journal\":{\"name\":\"2016 IEEE Power and Energy Society General Meeting (PESGM)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Power and Energy Society General Meeting (PESGM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM.2016.7741571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Power and Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2016.7741571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种基于SCADA (Supervisory Control and Data Acquisition)数据的风电齿轮箱监测模型。利用普通齿轮箱的数据训练深度神经网络(DNN)来预测其性能。然后用正常和异常齿轮箱的数据对所建立的深度神经网络模型进行了测试。统计过程控制图可以通过拟合误差检测齿轮箱的异常行为。通过两个齿轮箱故障实例验证了该监测模型检测齿轮箱异常行为的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wind turbine gearbox failure monitoring based on SCADA data analysis
A model for monitoring the wind turbine gearbox based on Supervisory Control and Data Acquisition (SCADA) data is developed. A deep neural network (DNN) is trained with the data of normal gearboxes to predict its performance. The developed DNN model is next tested with data of the normal and abnormal gearboxes. The abnormal behavior of the gearbox can be detected by the statistical process control charts via the fitting error. The capacity of the monitoring model for detecting the abnormal behavior of gearbox is validated by two gearbox failure cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A laboratory experiment of single machine synchronous islanding using PMUs and Raspberry Pi — A platform for multi-machine islanding Distributed vs. concentrated rapid frequency response provision in future great britain system Analysis of IEEE C37.118 and IEC 61850-90-5 synchrophasor communication frameworks A Review of probabilistic methods for defining reserve requirements DC fault protection strategy considering DC network partition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1