热红外图像压缩可解释性损失预测

Hua-mei Chen, J. Irvine, Zhonghai Wang, Genshe Chen, Erik Blasch, James Nagy
{"title":"热红外图像压缩可解释性损失预测","authors":"Hua-mei Chen, J. Irvine, Zhonghai Wang, Genshe Chen, Erik Blasch, James Nagy","doi":"10.1109/AIPR.2018.8707416","DOIUrl":null,"url":null,"abstract":"Analysis of thermal Infrared (IR) imagery is critical to many law enforcement and military missions, particularly for operations at night or in low-light conditions. Transmitting the imagery data from the sensor to the operator often relies on limited bandwidth channels, leading to information loss. This paper develops a method, known as the Compression Degradation Image Function Index (CoDIFI) framework, that predicts the degradation in interpretability associated with the specific image compression method and level of compression. Quantification of the image interpretability relies on the National Imagery Interpretability Ratings Scale (NIIRS). Building on previously reported development and validation of CoDIFI operating on electro-optical (EO) imagery collected in the visible region, this paper extends CoDIFI to imagery collected in the mid-wave infrared (MWIR) region, approximately 3 to 5 microns. For the infrared imagery application, the IR NIIRS is the standard for quantifying image interpretability and the prediction model rests on the general image quality equation (GIQE). A prediction model using the CoDIFI for IR imagery is established with empirical validation. By leveraging the CoDIFI in operational settings, mission success ensures that the compression selection is achievable in terms of the NIIRS level of imagery data delivered to users, while optimizing the use of scarce data transmission capacity.","PeriodicalId":230582,"journal":{"name":"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"283 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Predicting Interpretability Loss in Thermal IR Imagery due to Compression\",\"authors\":\"Hua-mei Chen, J. Irvine, Zhonghai Wang, Genshe Chen, Erik Blasch, James Nagy\",\"doi\":\"10.1109/AIPR.2018.8707416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of thermal Infrared (IR) imagery is critical to many law enforcement and military missions, particularly for operations at night or in low-light conditions. Transmitting the imagery data from the sensor to the operator often relies on limited bandwidth channels, leading to information loss. This paper develops a method, known as the Compression Degradation Image Function Index (CoDIFI) framework, that predicts the degradation in interpretability associated with the specific image compression method and level of compression. Quantification of the image interpretability relies on the National Imagery Interpretability Ratings Scale (NIIRS). Building on previously reported development and validation of CoDIFI operating on electro-optical (EO) imagery collected in the visible region, this paper extends CoDIFI to imagery collected in the mid-wave infrared (MWIR) region, approximately 3 to 5 microns. For the infrared imagery application, the IR NIIRS is the standard for quantifying image interpretability and the prediction model rests on the general image quality equation (GIQE). A prediction model using the CoDIFI for IR imagery is established with empirical validation. By leveraging the CoDIFI in operational settings, mission success ensures that the compression selection is achievable in terms of the NIIRS level of imagery data delivered to users, while optimizing the use of scarce data transmission capacity.\",\"PeriodicalId\":230582,\"journal\":{\"name\":\"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"283 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2018.8707416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2018.8707416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

热红外(IR)图像的分析对许多执法和军事任务至关重要,特别是在夜间或低光条件下的行动。将图像数据从传感器传输到操作员往往依赖于有限的带宽通道,导致信息丢失。本文开发了一种方法,称为压缩退化图像函数索引(CoDIFI)框架,该框架预测与特定图像压缩方法和压缩级别相关的可解释性退化。图像可解释性的量化依赖于国家图像可解释性评级量表(NIIRS)。基于先前报道的CoDIFI在可见光区域收集的光电(EO)图像上的发展和验证,本文将CoDIFI扩展到中波红外(MWIR)区域收集的图像,大约3到5微米。在红外成像应用中,红外近红外光谱是量化图像可解释性的标准,预测模型基于一般图像质量方程(GIQE)。建立了基于CoDIFI的红外图像预测模型,并进行了实证验证。通过在操作设置中利用CoDIFI,任务成功确保在交付给用户的NIIRS图像数据级别方面可以实现压缩选择,同时优化稀缺数据传输容量的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Interpretability Loss in Thermal IR Imagery due to Compression
Analysis of thermal Infrared (IR) imagery is critical to many law enforcement and military missions, particularly for operations at night or in low-light conditions. Transmitting the imagery data from the sensor to the operator often relies on limited bandwidth channels, leading to information loss. This paper develops a method, known as the Compression Degradation Image Function Index (CoDIFI) framework, that predicts the degradation in interpretability associated with the specific image compression method and level of compression. Quantification of the image interpretability relies on the National Imagery Interpretability Ratings Scale (NIIRS). Building on previously reported development and validation of CoDIFI operating on electro-optical (EO) imagery collected in the visible region, this paper extends CoDIFI to imagery collected in the mid-wave infrared (MWIR) region, approximately 3 to 5 microns. For the infrared imagery application, the IR NIIRS is the standard for quantifying image interpretability and the prediction model rests on the general image quality equation (GIQE). A prediction model using the CoDIFI for IR imagery is established with empirical validation. By leveraging the CoDIFI in operational settings, mission success ensures that the compression selection is achievable in terms of the NIIRS level of imagery data delivered to users, while optimizing the use of scarce data transmission capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Annotation of Satellite Imagery using Model-based Projections Visualizing Compression of Deep Learning Models for Classification Malware Classification using Deep Convolutional Neural Networks An Improved Star Detection Algorithm Using a Combination of Statistical and Morphological Image Processing Techniques Improving Nuclei Classification Performance in H&E Stained Tissue Images Using Fully Convolutional Regression Network and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1