无源两相浸没冷却的非热方面的设计考虑

P. Tuma
{"title":"无源两相浸没冷却的非热方面的设计考虑","authors":"P. Tuma","doi":"10.1109/STHERM.2011.5767224","DOIUrl":null,"url":null,"abstract":"There is renewed interest in passive 2-phase immersion for cooling power electronics and high performance computers. This can be attributed to recent research showing its performance potential compared with more complex and costly techniques, to innovations that simplify its application and to a general trend toward higher power densities. Though the thermal performance capabilities of passive 2-phase immersion cooling are well documented, the technique is not widely practiced and system designers will find little published information concerning subtler and very critical aspects of system design. There is no manual, for example, concerning practical details like material compatibility, electrical signal integrity (SI), fluid decomposition, management of moisture and light gases, and so on. This paper presents a useful material compatibility test method and explains the mechanisms of distillation and extraction that are intrinsic to a refluxing 2-phase system and by which wetted materials interact with the fluid and each other. It discusses sources, implications and techniques for removal of organic contaminants, water, non-condensable air and fluid thermal decomposition products. Data are presented from sub-20GHz SI experiments conducted with backplane connectors and microstrip transmission lines submerged in two classes of environmentally sustainable working fluids. It is hoped that this overview will demystify these subjects for designers unfamiliar with passive 2-phase immersion cooling and encourage more widespread adoption of this elegant and proven technology.","PeriodicalId":128077,"journal":{"name":"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Design considerations relating to non-thermal aspects of passive 2-phase immersion cooling\",\"authors\":\"P. Tuma\",\"doi\":\"10.1109/STHERM.2011.5767224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is renewed interest in passive 2-phase immersion for cooling power electronics and high performance computers. This can be attributed to recent research showing its performance potential compared with more complex and costly techniques, to innovations that simplify its application and to a general trend toward higher power densities. Though the thermal performance capabilities of passive 2-phase immersion cooling are well documented, the technique is not widely practiced and system designers will find little published information concerning subtler and very critical aspects of system design. There is no manual, for example, concerning practical details like material compatibility, electrical signal integrity (SI), fluid decomposition, management of moisture and light gases, and so on. This paper presents a useful material compatibility test method and explains the mechanisms of distillation and extraction that are intrinsic to a refluxing 2-phase system and by which wetted materials interact with the fluid and each other. It discusses sources, implications and techniques for removal of organic contaminants, water, non-condensable air and fluid thermal decomposition products. Data are presented from sub-20GHz SI experiments conducted with backplane connectors and microstrip transmission lines submerged in two classes of environmentally sustainable working fluids. It is hoped that this overview will demystify these subjects for designers unfamiliar with passive 2-phase immersion cooling and encourage more widespread adoption of this elegant and proven technology.\",\"PeriodicalId\":128077,\"journal\":{\"name\":\"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STHERM.2011.5767224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STHERM.2011.5767224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

对于用于冷却电力电子设备和高性能计算机的被动两相浸没,人们重新产生了兴趣。这可以归因于最近的研究表明,与更复杂和昂贵的技术相比,它的性能潜力,简化其应用的创新以及更高功率密度的总体趋势。虽然被动两相浸入式冷却的热性能有很好的文献记载,但该技术并没有得到广泛的实践,系统设计师在系统设计的微妙和非常关键的方面几乎找不到公开的信息。例如,没有手册,涉及诸如材料兼容性,电信号完整性(SI),流体分解,水分和轻气体管理等实际细节。本文提出了一种有用的材料相容性测试方法,并解释了回流两相系统固有的蒸馏和萃取机制,以及湿物质与流体相互作用和相互作用的机制。它讨论了去除有机污染物、水、不可冷凝空气和流体热分解产物的来源、影响和技术。数据来自低于20ghz的SI实验,其中背板连接器和微带传输线浸没在两类环境可持续的工作流体中。希望这篇综述能够为不熟悉被动两相浸入式冷却的设计人员揭开这些主题的神秘面纱,并鼓励更广泛地采用这种优雅而成熟的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design considerations relating to non-thermal aspects of passive 2-phase immersion cooling
There is renewed interest in passive 2-phase immersion for cooling power electronics and high performance computers. This can be attributed to recent research showing its performance potential compared with more complex and costly techniques, to innovations that simplify its application and to a general trend toward higher power densities. Though the thermal performance capabilities of passive 2-phase immersion cooling are well documented, the technique is not widely practiced and system designers will find little published information concerning subtler and very critical aspects of system design. There is no manual, for example, concerning practical details like material compatibility, electrical signal integrity (SI), fluid decomposition, management of moisture and light gases, and so on. This paper presents a useful material compatibility test method and explains the mechanisms of distillation and extraction that are intrinsic to a refluxing 2-phase system and by which wetted materials interact with the fluid and each other. It discusses sources, implications and techniques for removal of organic contaminants, water, non-condensable air and fluid thermal decomposition products. Data are presented from sub-20GHz SI experiments conducted with backplane connectors and microstrip transmission lines submerged in two classes of environmentally sustainable working fluids. It is hoped that this overview will demystify these subjects for designers unfamiliar with passive 2-phase immersion cooling and encourage more widespread adoption of this elegant and proven technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data center design using improved CFD modeling and cost reduction analysis Data center efficiency with higher ambient temperatures and optimized cooling control Effect of server load variation on rack air flow distribution in a raised floor data center Thermal design in the Design for Six Sigma — DIDOV framework ASIC package lid effects on temperature and lifetime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1