Chung Xue Er Shamaine, Yuansong Qiao, John Henry, Ken McNevin, Niall Murray
{"title":"RoSTAR:基于ros的远程机器人控制通过增强现实","authors":"Chung Xue Er Shamaine, Yuansong Qiao, John Henry, Ken McNevin, Niall Murray","doi":"10.1109/MMSP48831.2020.9287100","DOIUrl":null,"url":null,"abstract":"Real world virtual world communication and interaction will be a cornerstone of future intelligent manufacturing ecosystems. Human robotic interaction is considered to be the basic element of factories of the future. Despite the advancement of different technologies such as wearables and Augmented Reality (AR), human-robot interaction (HRI) is still extremely challenging. Whilst progress has been made in the development of different mechanisms to support HRI, there are issues with cost, naturalistic and intuitive interaction, and communication across heterogeneous systems. To mitigate these limitations, RoSTAR is proposed. RoSTAR is a novel open-source HRI system based on the Robot Operating System (ROS) and Augmented Reality. An AR Head Mounted Display (HMD) is deployed. It enables the user to interact and communicate through a ROS powered robotic arm. A model of the robot arm is imported directly into the Unity Game engine, and any interactions with this virtual robotic arm are communicated to the ROS robotic arm. This system has the potential to be used for different process tasks, such as robotic gluing, dispensing and arc welding as part of an interoperable, low cost, portable and naturalistically interactive experience.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"RoSTAR: ROS-based Telerobotic Control via Augmented Reality\",\"authors\":\"Chung Xue Er Shamaine, Yuansong Qiao, John Henry, Ken McNevin, Niall Murray\",\"doi\":\"10.1109/MMSP48831.2020.9287100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real world virtual world communication and interaction will be a cornerstone of future intelligent manufacturing ecosystems. Human robotic interaction is considered to be the basic element of factories of the future. Despite the advancement of different technologies such as wearables and Augmented Reality (AR), human-robot interaction (HRI) is still extremely challenging. Whilst progress has been made in the development of different mechanisms to support HRI, there are issues with cost, naturalistic and intuitive interaction, and communication across heterogeneous systems. To mitigate these limitations, RoSTAR is proposed. RoSTAR is a novel open-source HRI system based on the Robot Operating System (ROS) and Augmented Reality. An AR Head Mounted Display (HMD) is deployed. It enables the user to interact and communicate through a ROS powered robotic arm. A model of the robot arm is imported directly into the Unity Game engine, and any interactions with this virtual robotic arm are communicated to the ROS robotic arm. This system has the potential to be used for different process tasks, such as robotic gluing, dispensing and arc welding as part of an interoperable, low cost, portable and naturalistically interactive experience.\",\"PeriodicalId\":188283,\"journal\":{\"name\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP48831.2020.9287100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RoSTAR: ROS-based Telerobotic Control via Augmented Reality
Real world virtual world communication and interaction will be a cornerstone of future intelligent manufacturing ecosystems. Human robotic interaction is considered to be the basic element of factories of the future. Despite the advancement of different technologies such as wearables and Augmented Reality (AR), human-robot interaction (HRI) is still extremely challenging. Whilst progress has been made in the development of different mechanisms to support HRI, there are issues with cost, naturalistic and intuitive interaction, and communication across heterogeneous systems. To mitigate these limitations, RoSTAR is proposed. RoSTAR is a novel open-source HRI system based on the Robot Operating System (ROS) and Augmented Reality. An AR Head Mounted Display (HMD) is deployed. It enables the user to interact and communicate through a ROS powered robotic arm. A model of the robot arm is imported directly into the Unity Game engine, and any interactions with this virtual robotic arm are communicated to the ROS robotic arm. This system has the potential to be used for different process tasks, such as robotic gluing, dispensing and arc welding as part of an interoperable, low cost, portable and naturalistically interactive experience.