从个体生理数据中发现情感逻辑规律

N. Costadopoulos, M. Islam, D. Tien
{"title":"从个体生理数据中发现情感逻辑规律","authors":"N. Costadopoulos, M. Islam, D. Tien","doi":"10.1109/ICMLC48188.2019.8949274","DOIUrl":null,"url":null,"abstract":"This paper discusses our work on discovering a set of emotional logic rules, derived from physiological data of individuals from a wearable technology perspective. We concentrated the analysis on physiological data such as plethysmography, respiration, galvanic skin response, and temperature that can be detected by wearable sensors. We sourced our data from the DEAP dataset, which is a popular labelled Affective Computing dataset. Our approach implemented a fusion of preprocessing and data mining techniques, to discover logic rules relating to the valence and arousal emotional dimensions. Our findings indicate that while there are similar changes in heart rates or galvanic skin response across individuals during emotional stimuli, every individual has a unique and quantifiable physiological reaction.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Discovering Emotional Logic Rules From Physiological Data of Individuals\",\"authors\":\"N. Costadopoulos, M. Islam, D. Tien\",\"doi\":\"10.1109/ICMLC48188.2019.8949274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses our work on discovering a set of emotional logic rules, derived from physiological data of individuals from a wearable technology perspective. We concentrated the analysis on physiological data such as plethysmography, respiration, galvanic skin response, and temperature that can be detected by wearable sensors. We sourced our data from the DEAP dataset, which is a popular labelled Affective Computing dataset. Our approach implemented a fusion of preprocessing and data mining techniques, to discover logic rules relating to the valence and arousal emotional dimensions. Our findings indicate that while there are similar changes in heart rates or galvanic skin response across individuals during emotional stimuli, every individual has a unique and quantifiable physiological reaction.\",\"PeriodicalId\":221349,\"journal\":{\"name\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC48188.2019.8949274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文讨论了我们从可穿戴技术的角度从个人的生理数据中发现一套情感逻辑规则的工作。我们集中分析了可穿戴传感器可以检测到的生理数据,如体积脉搏图、呼吸、皮肤电反应和温度。我们的数据来源于DEAP数据集,这是一个流行的标记为情感计算的数据集。我们的方法实现了预处理和数据挖掘技术的融合,以发现与效价和唤醒情感维度相关的逻辑规则。我们的研究结果表明,虽然在情绪刺激期间,个体之间的心率或皮肤电反应有类似的变化,但每个个体都有独特的、可量化的生理反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering Emotional Logic Rules From Physiological Data of Individuals
This paper discusses our work on discovering a set of emotional logic rules, derived from physiological data of individuals from a wearable technology perspective. We concentrated the analysis on physiological data such as plethysmography, respiration, galvanic skin response, and temperature that can be detected by wearable sensors. We sourced our data from the DEAP dataset, which is a popular labelled Affective Computing dataset. Our approach implemented a fusion of preprocessing and data mining techniques, to discover logic rules relating to the valence and arousal emotional dimensions. Our findings indicate that while there are similar changes in heart rates or galvanic skin response across individuals during emotional stimuli, every individual has a unique and quantifiable physiological reaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Empirical Study on the Classification of Chinese News Articles by Machine Learning and Deep Learning Techniques Posture Estimation Method Using Cushion Type Seat Pressure Sensor Advanced Convolutional Neural Network With Feedforward Inhibition Utilization of the Infrared Image Capturing Combustion State for Estimating the Steam Flow Aming to Stabilize Garbage Power Generation Domain Adaption for Facial Expression Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1