利用线性和非线性神经网络方法确定人民币汇率制度

Xiaobing Feng
{"title":"利用线性和非线性神经网络方法确定人民币汇率制度","authors":"Xiaobing Feng","doi":"10.1109/BCGIN.2011.54","DOIUrl":null,"url":null,"abstract":"Since 2005 China has claimed that it will move towards a more market-oriented system of managing its foreign exchange. China, however, has remained in part a managed economic system. This article examines the relative importance of fundamentalist, chartist and currency arrangements in determining the RMB exchange regime using both traditional linear models and artificial neural networks (ANN). We find that the emphasis on the US Dollar as a reference currency has declined. Fundamentalist forces are strong determinants of the currency exchange. The RBF ANN model is among the best performing in minimizing forecasting error.","PeriodicalId":127523,"journal":{"name":"2011 International Conference on Business Computing and Global Informatization","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the RMB Exchange Regime Using Linear and Nonlinear ANN Approaches\",\"authors\":\"Xiaobing Feng\",\"doi\":\"10.1109/BCGIN.2011.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since 2005 China has claimed that it will move towards a more market-oriented system of managing its foreign exchange. China, however, has remained in part a managed economic system. This article examines the relative importance of fundamentalist, chartist and currency arrangements in determining the RMB exchange regime using both traditional linear models and artificial neural networks (ANN). We find that the emphasis on the US Dollar as a reference currency has declined. Fundamentalist forces are strong determinants of the currency exchange. The RBF ANN model is among the best performing in minimizing forecasting error.\",\"PeriodicalId\":127523,\"journal\":{\"name\":\"2011 International Conference on Business Computing and Global Informatization\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Business Computing and Global Informatization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCGIN.2011.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Business Computing and Global Informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCGIN.2011.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自2005年以来,中国一直声称将朝着更加市场化的外汇管理体系迈进。然而,中国在某种程度上仍然是一个有管理的经济体制。本文利用传统的线性模型和人工神经网络(ANN)研究了原教旨主义、图表派和货币安排在决定人民币汇率制度中的相对重要性。我们发现,对美元作为参考货币的重视程度有所下降。原教旨主义势力是货币兑换的重要决定因素。RBF神经网络模型在最小化预测误差方面表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determining the RMB Exchange Regime Using Linear and Nonlinear ANN Approaches
Since 2005 China has claimed that it will move towards a more market-oriented system of managing its foreign exchange. China, however, has remained in part a managed economic system. This article examines the relative importance of fundamentalist, chartist and currency arrangements in determining the RMB exchange regime using both traditional linear models and artificial neural networks (ANN). We find that the emphasis on the US Dollar as a reference currency has declined. Fundamentalist forces are strong determinants of the currency exchange. The RBF ANN model is among the best performing in minimizing forecasting error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Bisect K-Means Clustering Algorithm A Labeling Algorithm for the Earliest and Latest Time-Varying Maximum Flow Problems The Research on Motive Force of Urban Development Based on Informationization The Eddy Currents Calculation Based on the Least Square Algorithm for EAST A Passive Locating Algorithm for Motive Target Based on Modified Particle Filter Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1