A. Pilotto, P. Palestri, L. Selmi, M. Antonelli, F. Arfelli, G. Biasiol, G. Cautero, F. Driussi, R. Menk, C. Nichetti, T. Steinhartova
{"title":"一种改进的p-i-n和阶梯雪崩光电二极管随机路径长度算法","authors":"A. Pilotto, P. Palestri, L. Selmi, M. Antonelli, F. Arfelli, G. Biasiol, G. Cautero, F. Driussi, R. Menk, C. Nichetti, T. Steinhartova","doi":"10.1109/SISPAD.2018.8551751","DOIUrl":null,"url":null,"abstract":"We present an improved Random Path Length algorithm to accurately and efficiently estimate the design space of heterostructure avalanche photodiodes (APDs) in terms of gain, noise and bandwidth without any need of full Monte Carlo transport simulations. The underlying nonlocal model for impact ionization goes beyond the Dead Space concept and it is suited to handle staircase structures composed by a superlattice of III-V compounds as well as thick and thin p-i-n APDs. The model parameters have been calibrated on GaAs and $Al_{x}Ga_{1-x}As$ p-i-n APDs in a previous work. In this work GaAs p-i-n APDs are compared to staircase structures in terms of noise and bandwidth.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Improved Random Path Length Algorithm for p-i-n and Staircase Avalanche Photodiodes\",\"authors\":\"A. Pilotto, P. Palestri, L. Selmi, M. Antonelli, F. Arfelli, G. Biasiol, G. Cautero, F. Driussi, R. Menk, C. Nichetti, T. Steinhartova\",\"doi\":\"10.1109/SISPAD.2018.8551751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an improved Random Path Length algorithm to accurately and efficiently estimate the design space of heterostructure avalanche photodiodes (APDs) in terms of gain, noise and bandwidth without any need of full Monte Carlo transport simulations. The underlying nonlocal model for impact ionization goes beyond the Dead Space concept and it is suited to handle staircase structures composed by a superlattice of III-V compounds as well as thick and thin p-i-n APDs. The model parameters have been calibrated on GaAs and $Al_{x}Ga_{1-x}As$ p-i-n APDs in a previous work. In this work GaAs p-i-n APDs are compared to staircase structures in terms of noise and bandwidth.\",\"PeriodicalId\":170070,\"journal\":{\"name\":\"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2018.8551751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2018.8551751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Improved Random Path Length Algorithm for p-i-n and Staircase Avalanche Photodiodes
We present an improved Random Path Length algorithm to accurately and efficiently estimate the design space of heterostructure avalanche photodiodes (APDs) in terms of gain, noise and bandwidth without any need of full Monte Carlo transport simulations. The underlying nonlocal model for impact ionization goes beyond the Dead Space concept and it is suited to handle staircase structures composed by a superlattice of III-V compounds as well as thick and thin p-i-n APDs. The model parameters have been calibrated on GaAs and $Al_{x}Ga_{1-x}As$ p-i-n APDs in a previous work. In this work GaAs p-i-n APDs are compared to staircase structures in terms of noise and bandwidth.