用于地点分类的多模态全景3D户外数据集

Hojung Jung, Yuki Oto, Óscar Martínez Mozos, Y. Iwashita, R. Kurazume
{"title":"用于地点分类的多模态全景3D户外数据集","authors":"Hojung Jung, Yuki Oto, Óscar Martínez Mozos, Y. Iwashita, R. Kurazume","doi":"10.1109/IROS.2016.7759669","DOIUrl":null,"url":null,"abstract":"We present two multi-modal panoramic 3D outdoor (MPO) datasets for semantic place categorization with six categories: forest, coast, residential area, urban area and indoor/outdoor parking lot. The first dataset consists of 650 static panoramic scans of dense (9,000,000 points) 3D color and reflectance point clouds obtained using a FARO laser scanner with synchronized color images. The second dataset consists of 34,200 real-time panoramic scans of sparse (70,000 points) 3D reflectance point clouds obtained using a Velodyne laser scanner while driving a car. The datasets were obtained in the city of Fukuoka, Japan and are publicly available in [1], [2]. In addition, we compare several approaches for semantic place categorization with best results of 96.42% (dense) and 89.67% (sparse).","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Multi-modal panoramic 3D outdoor datasets for place categorization\",\"authors\":\"Hojung Jung, Yuki Oto, Óscar Martínez Mozos, Y. Iwashita, R. Kurazume\",\"doi\":\"10.1109/IROS.2016.7759669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two multi-modal panoramic 3D outdoor (MPO) datasets for semantic place categorization with six categories: forest, coast, residential area, urban area and indoor/outdoor parking lot. The first dataset consists of 650 static panoramic scans of dense (9,000,000 points) 3D color and reflectance point clouds obtained using a FARO laser scanner with synchronized color images. The second dataset consists of 34,200 real-time panoramic scans of sparse (70,000 points) 3D reflectance point clouds obtained using a Velodyne laser scanner while driving a car. The datasets were obtained in the city of Fukuoka, Japan and are publicly available in [1], [2]. In addition, we compare several approaches for semantic place categorization with best results of 96.42% (dense) and 89.67% (sparse).\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了两个多模态全景3D户外(MPO)数据集,用于语义地点分类,包括森林、海岸、居民区、城区和室内外停车场6个类别。第一个数据集由650个静态全景扫描的密集(9,000,000点)3D彩色和反射率点云,使用同步彩色图像的FARO激光扫描仪获得。第二个数据集由34,200个实时全景扫描的稀疏(70,000点)3D反射率点云组成,使用Velodyne激光扫描仪在驾驶汽车时获得。这些数据集来自日本福冈市,可在[1],[2]中公开获取。此外,我们比较了几种语义位置分类方法,最佳结果为96.42%(密集)和89.67%(稀疏)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-modal panoramic 3D outdoor datasets for place categorization
We present two multi-modal panoramic 3D outdoor (MPO) datasets for semantic place categorization with six categories: forest, coast, residential area, urban area and indoor/outdoor parking lot. The first dataset consists of 650 static panoramic scans of dense (9,000,000 points) 3D color and reflectance point clouds obtained using a FARO laser scanner with synchronized color images. The second dataset consists of 34,200 real-time panoramic scans of sparse (70,000 points) 3D reflectance point clouds obtained using a Velodyne laser scanner while driving a car. The datasets were obtained in the city of Fukuoka, Japan and are publicly available in [1], [2]. In addition, we compare several approaches for semantic place categorization with best results of 96.42% (dense) and 89.67% (sparse).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A passivity-based admittance control design using feedback interconnections Performance comparison of Wave Variable Transformation and Time Domain Passivity Approaches for time-delayed teleoperation: Preliminary results Iterative path optimisation for personalised dressing assistance using vision and force information Hand-eye calibration for robotic assisted minimally invasive surgery without a calibration object Modelling and dynamic analysis of underactuated capsule systems with friction-induced hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1