Hojung Jung, Yuki Oto, Óscar Martínez Mozos, Y. Iwashita, R. Kurazume
{"title":"用于地点分类的多模态全景3D户外数据集","authors":"Hojung Jung, Yuki Oto, Óscar Martínez Mozos, Y. Iwashita, R. Kurazume","doi":"10.1109/IROS.2016.7759669","DOIUrl":null,"url":null,"abstract":"We present two multi-modal panoramic 3D outdoor (MPO) datasets for semantic place categorization with six categories: forest, coast, residential area, urban area and indoor/outdoor parking lot. The first dataset consists of 650 static panoramic scans of dense (9,000,000 points) 3D color and reflectance point clouds obtained using a FARO laser scanner with synchronized color images. The second dataset consists of 34,200 real-time panoramic scans of sparse (70,000 points) 3D reflectance point clouds obtained using a Velodyne laser scanner while driving a car. The datasets were obtained in the city of Fukuoka, Japan and are publicly available in [1], [2]. In addition, we compare several approaches for semantic place categorization with best results of 96.42% (dense) and 89.67% (sparse).","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Multi-modal panoramic 3D outdoor datasets for place categorization\",\"authors\":\"Hojung Jung, Yuki Oto, Óscar Martínez Mozos, Y. Iwashita, R. Kurazume\",\"doi\":\"10.1109/IROS.2016.7759669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two multi-modal panoramic 3D outdoor (MPO) datasets for semantic place categorization with six categories: forest, coast, residential area, urban area and indoor/outdoor parking lot. The first dataset consists of 650 static panoramic scans of dense (9,000,000 points) 3D color and reflectance point clouds obtained using a FARO laser scanner with synchronized color images. The second dataset consists of 34,200 real-time panoramic scans of sparse (70,000 points) 3D reflectance point clouds obtained using a Velodyne laser scanner while driving a car. The datasets were obtained in the city of Fukuoka, Japan and are publicly available in [1], [2]. In addition, we compare several approaches for semantic place categorization with best results of 96.42% (dense) and 89.67% (sparse).\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-modal panoramic 3D outdoor datasets for place categorization
We present two multi-modal panoramic 3D outdoor (MPO) datasets for semantic place categorization with six categories: forest, coast, residential area, urban area and indoor/outdoor parking lot. The first dataset consists of 650 static panoramic scans of dense (9,000,000 points) 3D color and reflectance point clouds obtained using a FARO laser scanner with synchronized color images. The second dataset consists of 34,200 real-time panoramic scans of sparse (70,000 points) 3D reflectance point clouds obtained using a Velodyne laser scanner while driving a car. The datasets were obtained in the city of Fukuoka, Japan and are publicly available in [1], [2]. In addition, we compare several approaches for semantic place categorization with best results of 96.42% (dense) and 89.67% (sparse).