环氧树脂包覆Fe3O4/聚噻吩/金纳米复合膜的制备及其电磁干扰屏蔽性能

Lingchong Xue, Hongze Zhang, Zhi Zhou, Kedong Bi
{"title":"环氧树脂包覆Fe3O4/聚噻吩/金纳米复合膜的制备及其电磁干扰屏蔽性能","authors":"Lingchong Xue, Hongze Zhang, Zhi Zhou, Kedong Bi","doi":"10.1109/NEMS57332.2023.10190855","DOIUrl":null,"url":null,"abstract":"The advancement of fifth-generation (5G) mobile communication technologies has led to an exponential increase in the utilization of electronic devices, thereby necessitating the development of lightweight and thin electromagnetic interference (EMI) shielding materials to mitigate the associated electromagnetic (EM) pollution. A multilayered EMI shielding composite was synthesized through an elaborate multistep process, with the epoxy resin positioned in the upper and lower layers as the protective coating and a multilayered nanocomposite film, composed of Fe3O4 nanoparticles, polythiophene (PTh) nanofiber arrays, and an Au nanofilm, embedded in the middle layer. The favorable combination of magnetic nanoparticles and conducting polymer (CP) nanofiber arrays resulted in an EMI shielding effect (EMI SE) of over 30 dB when Fe3O4 was used in moderate amounts, surpassing the EMI SE of the PTh nanofiber arrays/Au/epoxy resin EMI shielding composite (~23 dB) prepared through a similar process, but without the immersion in Fe3O4 nanoparticle dispersion. The improved EMI SE is attributed to the incorporation of magnetic nanoparticles, which enhanced the impedance mismatch between the arrays and air, and introduced magnetic losses that further attenuate the EM waves. This novel, lightweight, thin, multilayered EMI shielding nanocomposite film exhibits excellent EMI shielding performance and holds great potential for use in EMI shielding and protection for high-powered electronic devices.","PeriodicalId":142575,"journal":{"name":"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and Electromagnetic Interference Shielding Properties of a Fe3O4/Polythiophene/Au Nanocomposite Film Coated by Epoxy Resin\",\"authors\":\"Lingchong Xue, Hongze Zhang, Zhi Zhou, Kedong Bi\",\"doi\":\"10.1109/NEMS57332.2023.10190855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement of fifth-generation (5G) mobile communication technologies has led to an exponential increase in the utilization of electronic devices, thereby necessitating the development of lightweight and thin electromagnetic interference (EMI) shielding materials to mitigate the associated electromagnetic (EM) pollution. A multilayered EMI shielding composite was synthesized through an elaborate multistep process, with the epoxy resin positioned in the upper and lower layers as the protective coating and a multilayered nanocomposite film, composed of Fe3O4 nanoparticles, polythiophene (PTh) nanofiber arrays, and an Au nanofilm, embedded in the middle layer. The favorable combination of magnetic nanoparticles and conducting polymer (CP) nanofiber arrays resulted in an EMI shielding effect (EMI SE) of over 30 dB when Fe3O4 was used in moderate amounts, surpassing the EMI SE of the PTh nanofiber arrays/Au/epoxy resin EMI shielding composite (~23 dB) prepared through a similar process, but without the immersion in Fe3O4 nanoparticle dispersion. The improved EMI SE is attributed to the incorporation of magnetic nanoparticles, which enhanced the impedance mismatch between the arrays and air, and introduced magnetic losses that further attenuate the EM waves. This novel, lightweight, thin, multilayered EMI shielding nanocomposite film exhibits excellent EMI shielding performance and holds great potential for use in EMI shielding and protection for high-powered electronic devices.\",\"PeriodicalId\":142575,\"journal\":{\"name\":\"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS57332.2023.10190855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS57332.2023.10190855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

第五代(5G)移动通信技术的进步导致电子设备的利用率呈指数级增长,因此有必要开发轻质和薄的电磁干扰(EMI)屏蔽材料,以减轻相关的电磁(EM)污染。多层电磁干扰屏蔽复合材料采用多步骤工艺制备,上下两层采用环氧树脂作为保护涂层,中间层采用由Fe3O4纳米粒子、聚噻吩(PTh)纳米纤维阵列和金纳米膜组成的多层纳米复合膜。磁性纳米粒子与导电聚合物(CP)纳米纤维阵列的良好组合,使其在适量使用Fe3O4时的EMI屏蔽效果(EMI SE)超过30 dB,超过了采用类似工艺制备的PTh纳米纤维阵列/Au/环氧树脂屏蔽复合材料(~23 dB),但没有浸泡在Fe3O4纳米颗粒分散中。改善的电磁干扰系数归因于磁性纳米颗粒的掺入,它增强了阵列与空气之间的阻抗失配,并引入了磁损耗,进一步衰减了电磁波。这种新颖、轻量、薄、多层的电磁干扰屏蔽纳米复合膜具有优异的电磁干扰屏蔽性能,在高功率电子设备的电磁干扰屏蔽和保护方面具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication and Electromagnetic Interference Shielding Properties of a Fe3O4/Polythiophene/Au Nanocomposite Film Coated by Epoxy Resin
The advancement of fifth-generation (5G) mobile communication technologies has led to an exponential increase in the utilization of electronic devices, thereby necessitating the development of lightweight and thin electromagnetic interference (EMI) shielding materials to mitigate the associated electromagnetic (EM) pollution. A multilayered EMI shielding composite was synthesized through an elaborate multistep process, with the epoxy resin positioned in the upper and lower layers as the protective coating and a multilayered nanocomposite film, composed of Fe3O4 nanoparticles, polythiophene (PTh) nanofiber arrays, and an Au nanofilm, embedded in the middle layer. The favorable combination of magnetic nanoparticles and conducting polymer (CP) nanofiber arrays resulted in an EMI shielding effect (EMI SE) of over 30 dB when Fe3O4 was used in moderate amounts, surpassing the EMI SE of the PTh nanofiber arrays/Au/epoxy resin EMI shielding composite (~23 dB) prepared through a similar process, but without the immersion in Fe3O4 nanoparticle dispersion. The improved EMI SE is attributed to the incorporation of magnetic nanoparticles, which enhanced the impedance mismatch between the arrays and air, and introduced magnetic losses that further attenuate the EM waves. This novel, lightweight, thin, multilayered EMI shielding nanocomposite film exhibits excellent EMI shielding performance and holds great potential for use in EMI shielding and protection for high-powered electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Easily Adjusting Capillary Flow Rates on Nitrocellulose Membranes by a Household Laminator Embedded manifold cooling for efficient thermal management of flexible electronics An Improved SOI-on-Glass Fabrication Method of Large-Area Sheeting of MEMS Isolator A novel electrodes design for in-plane measurement of single-structure multi-axis MEMS inertial devices A Novel Method for Packaging Microfluidic Thread-based Analytical Devices by Encapsulating Threads into Thermal Contraction Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1