神经CDMA多用户检测器性能分析

Toshiyuki TANAKA
{"title":"神经CDMA多用户检测器性能分析","authors":"Toshiyuki TANAKA","doi":"10.1109/IJCNN.2001.938825","DOIUrl":null,"url":null,"abstract":"We analyze the performance of neural code-division multiple-access (CDMA) multiuser detectors. Formal correspondence between the CDMA multiuser detection problem and recurrent neural networks such as the Hopfield neural network and the Boltzmann machines is established, based on which the replica analysis on the bit-error rate of the neural multiuser detectors is presented. Detection dynamics of the neural multiuser detectors is also analyzed based on statistical neurodynamics.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance analysis of neural CDMA multiuser detector\",\"authors\":\"Toshiyuki TANAKA\",\"doi\":\"10.1109/IJCNN.2001.938825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the performance of neural code-division multiple-access (CDMA) multiuser detectors. Formal correspondence between the CDMA multiuser detection problem and recurrent neural networks such as the Hopfield neural network and the Boltzmann machines is established, based on which the replica analysis on the bit-error rate of the neural multiuser detectors is presented. Detection dynamics of the neural multiuser detectors is also analyzed based on statistical neurodynamics.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.938825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.938825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

分析了神经码分多址(CDMA)多用户检测器的性能。建立了CDMA多用户检测问题与Hopfield神经网络和玻尔兹曼机等递归神经网络的形式化对应关系,并在此基础上对神经多用户检测器的误码率进行了复制分析。基于统计神经动力学分析了神经多用户检测器的检测动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance analysis of neural CDMA multiuser detector
We analyze the performance of neural code-division multiple-access (CDMA) multiuser detectors. Formal correspondence between the CDMA multiuser detection problem and recurrent neural networks such as the Hopfield neural network and the Boltzmann machines is established, based on which the replica analysis on the bit-error rate of the neural multiuser detectors is presented. Detection dynamics of the neural multiuser detectors is also analyzed based on statistical neurodynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1