视觉启发的全局路由,增强了性能和可靠性

J. Shin, N. Dutt, F. Kurdahi
{"title":"视觉启发的全局路由,增强了性能和可靠性","authors":"J. Shin, N. Dutt, F. Kurdahi","doi":"10.1109/ISQED.2013.6523616","DOIUrl":null,"url":null,"abstract":"As we enter the deep submicron era, transistors are increasingly added to chips, causing the chips to become hotter in a non-uniform manner. This is due to different processing tasks in different parts of the chips. This thermal gradient also causes a great number of problems such as the reduction in reliability of chips and interconnects due to electromigration, and system performance degradation because of increased delay and lowered clock frequencies. Since these thermal issues exist, interconnect routing, especially global routing, should be performed to consider the temperature distribution of substrates and the actual delay of interconnects. In this paper, we propose a global routing method based on image processing and computer vision techniques in which the probability of chip failure due to interconnect failure is reduced, and performance degradation from increased delay is also prevented. We observed that our method reduced the number of grids in hot regions by up to 50 % when compared with a conventional router, while maintaining the delay of interconnects as small as possible.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vision-inspired global routing for enhanced performance and reliability\",\"authors\":\"J. Shin, N. Dutt, F. Kurdahi\",\"doi\":\"10.1109/ISQED.2013.6523616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As we enter the deep submicron era, transistors are increasingly added to chips, causing the chips to become hotter in a non-uniform manner. This is due to different processing tasks in different parts of the chips. This thermal gradient also causes a great number of problems such as the reduction in reliability of chips and interconnects due to electromigration, and system performance degradation because of increased delay and lowered clock frequencies. Since these thermal issues exist, interconnect routing, especially global routing, should be performed to consider the temperature distribution of substrates and the actual delay of interconnects. In this paper, we propose a global routing method based on image processing and computer vision techniques in which the probability of chip failure due to interconnect failure is reduced, and performance degradation from increased delay is also prevented. We observed that our method reduced the number of grids in hot regions by up to 50 % when compared with a conventional router, while maintaining the delay of interconnects as small as possible.\",\"PeriodicalId\":127115,\"journal\":{\"name\":\"International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2013.6523616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着我们进入深亚微米时代,越来越多的晶体管被添加到芯片中,导致芯片以不均匀的方式变热。这是由于芯片不同部分的处理任务不同。这种热梯度也会导致大量的问题,例如由于电迁移导致芯片和互连可靠性降低,以及由于延迟增加和时钟频率降低而导致系统性能下降。由于这些热问题的存在,在进行互连布线,特别是全局布线时,应考虑衬底的温度分布和互连的实际延迟。在本文中,我们提出了一种基于图像处理和计算机视觉技术的全局路由方法,该方法降低了由于互连故障而导致芯片故障的概率,并且还防止了由于延迟增加而导致的性能下降。我们观察到,与传统路由器相比,我们的方法将热点地区的网格数量减少了50%,同时保持了尽可能小的互连延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vision-inspired global routing for enhanced performance and reliability
As we enter the deep submicron era, transistors are increasingly added to chips, causing the chips to become hotter in a non-uniform manner. This is due to different processing tasks in different parts of the chips. This thermal gradient also causes a great number of problems such as the reduction in reliability of chips and interconnects due to electromigration, and system performance degradation because of increased delay and lowered clock frequencies. Since these thermal issues exist, interconnect routing, especially global routing, should be performed to consider the temperature distribution of substrates and the actual delay of interconnects. In this paper, we propose a global routing method based on image processing and computer vision techniques in which the probability of chip failure due to interconnect failure is reduced, and performance degradation from increased delay is also prevented. We observed that our method reduced the number of grids in hot regions by up to 50 % when compared with a conventional router, while maintaining the delay of interconnects as small as possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast FPGA-based fault injection tool for embedded processors Effective thermal control techniques for liquid-cooled 3D multi-core processors Analysis and reliability test to improve the data retention performance of EPROM circuits Increasing the security level of analog IPs by using a dedicated vulnerability analysis methodology Easy-to-build Arbiter Physical Unclonable Function with enhanced challenge/response set
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1