基于anfiss的武器目标分配自学习专家系统

Changcheng Wang, Lisi Chen, Wencai Li, Kan Zeng
{"title":"基于anfiss的武器目标分配自学习专家系统","authors":"Changcheng Wang, Lisi Chen, Wencai Li, Kan Zeng","doi":"10.1145/3483845.3483863","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient algorithm to solve the weapon target assignment (WTA) problem combining the advantages of rule-based with that of traditional optimization methods. The main ideal of the proposed algorithm is building an adaptive neuro-fuzzy inference system (ANFIS) to obtain an original assignment scheme, and then the original scheme is used to initialize particles in discrete particle swarm optimization (DPSO). With the original assignment scheme provided by ANFIS, it can solve the problem of converging to local optimum with random initialization in DPSO efficiently. At last, a numerical simulation is proposed to illustrate the efficiency of the method in this paper.","PeriodicalId":134636,"journal":{"name":"Proceedings of the 2021 2nd International Conference on Control, Robotics and Intelligent System","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANFIS-based Self-learning Expert System for Weapon Target Assignment Problem\",\"authors\":\"Changcheng Wang, Lisi Chen, Wencai Li, Kan Zeng\",\"doi\":\"10.1145/3483845.3483863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an efficient algorithm to solve the weapon target assignment (WTA) problem combining the advantages of rule-based with that of traditional optimization methods. The main ideal of the proposed algorithm is building an adaptive neuro-fuzzy inference system (ANFIS) to obtain an original assignment scheme, and then the original scheme is used to initialize particles in discrete particle swarm optimization (DPSO). With the original assignment scheme provided by ANFIS, it can solve the problem of converging to local optimum with random initialization in DPSO efficiently. At last, a numerical simulation is proposed to illustrate the efficiency of the method in this paper.\",\"PeriodicalId\":134636,\"journal\":{\"name\":\"Proceedings of the 2021 2nd International Conference on Control, Robotics and Intelligent System\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 2nd International Conference on Control, Robotics and Intelligent System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3483845.3483863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 2nd International Conference on Control, Robotics and Intelligent System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3483845.3483863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文结合基于规则的优化方法和传统优化方法的优点,提出了一种求解武器目标分配问题的高效算法。该算法的主要思想是建立一个自适应神经模糊推理系统(ANFIS)来获得原始分配方案,然后使用原始分配方案对离散粒子群优化(DPSO)中的粒子进行初始化。利用ANFIS提供的原始分配方案,有效地解决了DPSO中随机初始化收敛到局部最优的问题。最后通过数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANFIS-based Self-learning Expert System for Weapon Target Assignment Problem
In this paper, we propose an efficient algorithm to solve the weapon target assignment (WTA) problem combining the advantages of rule-based with that of traditional optimization methods. The main ideal of the proposed algorithm is building an adaptive neuro-fuzzy inference system (ANFIS) to obtain an original assignment scheme, and then the original scheme is used to initialize particles in discrete particle swarm optimization (DPSO). With the original assignment scheme provided by ANFIS, it can solve the problem of converging to local optimum with random initialization in DPSO efficiently. At last, a numerical simulation is proposed to illustrate the efficiency of the method in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved non-autoregressive dialog state tracking model Dynamic characteristics analysis of a new variable stiffness robot joint Interactive Intention Prediction Model for Humanoid Robot Based on Visual Features A propelled multiple fusion Deep Belief Network for weld defects detection Detection of Fatigued Face
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1