去除污染数据用于光照鲁棒人脸识别

Zhen Xu, Zongqing Lu, Weifeng Li, Q. Liao
{"title":"去除污染数据用于光照鲁棒人脸识别","authors":"Zhen Xu, Zongqing Lu, Weifeng Li, Q. Liao","doi":"10.1109/IWSSIP.2017.7965577","DOIUrl":null,"url":null,"abstract":"Recently low-rank matrix decomposition (LR) and sparse representation classification (SRC) have been successfully applied to address the problem of face recognition. Low-rank matrix decomposition is employed as the first step of robust principal component analysis (RPCA), it is robust to illumination-contaminated image data. In this paper, we propose a novel method based on low-rank decomposition and sparse representation classification which is more robust to illumination-contaminated data. This method is a kind of test-data-drive illumination-robust face recognition. Our experimental results demonstrate the effectiveness of our proposed method.","PeriodicalId":302860,"journal":{"name":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removing contaminated data for illumination-robust face recognition\",\"authors\":\"Zhen Xu, Zongqing Lu, Weifeng Li, Q. Liao\",\"doi\":\"10.1109/IWSSIP.2017.7965577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently low-rank matrix decomposition (LR) and sparse representation classification (SRC) have been successfully applied to address the problem of face recognition. Low-rank matrix decomposition is employed as the first step of robust principal component analysis (RPCA), it is robust to illumination-contaminated image data. In this paper, we propose a novel method based on low-rank decomposition and sparse representation classification which is more robust to illumination-contaminated data. This method is a kind of test-data-drive illumination-robust face recognition. Our experimental results demonstrate the effectiveness of our proposed method.\",\"PeriodicalId\":302860,\"journal\":{\"name\":\"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSSIP.2017.7965577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2017.7965577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,低秩矩阵分解(LR)和稀疏表示分类(SRC)已成功地应用于人脸识别问题。采用低秩矩阵分解作为鲁棒主成分分析(RPCA)的第一步,它对光照污染的图像数据具有鲁棒性。本文提出了一种基于低秩分解和稀疏表示分类的新方法,该方法对光照污染数据具有更强的鲁棒性。该方法是一种测试数据驱动的光照鲁棒人脸识别方法。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Removing contaminated data for illumination-robust face recognition
Recently low-rank matrix decomposition (LR) and sparse representation classification (SRC) have been successfully applied to address the problem of face recognition. Low-rank matrix decomposition is employed as the first step of robust principal component analysis (RPCA), it is robust to illumination-contaminated image data. In this paper, we propose a novel method based on low-rank decomposition and sparse representation classification which is more robust to illumination-contaminated data. This method is a kind of test-data-drive illumination-robust face recognition. Our experimental results demonstrate the effectiveness of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient frame-compatible stereoscopic video coding using HEVC screen content coding Reinforcement learning for video encoder control in HEVC Software and hardware HEVC encoding Ensemble of CNN and rich model for steganalysis IVQAD 2017: An immersive video quality assessment database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1