F. Käfer, C. Ober, Z. MEng, R. Segalman, Javier Read de Alaniz
{"title":"用于电子束和EUV光刻的序列定义多肽CARs","authors":"F. Käfer, C. Ober, Z. MEng, R. Segalman, Javier Read de Alaniz","doi":"10.1117/12.2658413","DOIUrl":null,"url":null,"abstract":"Polymeric photoresists are limited in their sensitivity, resolution, and line-edge roughness due in large part to their molar mass distribution and variation in composition of single polymer chains. While most synthetic polymers, have monomer units distributed randomly along the polymer chain, polypeptoids are, however, characterized by low stochastics i.e., identical chains with extremely low chemical, structural, and molar mass variability with a widely adjustable length and composition. In this work we describe the synthesis of 10 repeat-unit polypeptoids designed as a photopolymer and demonstrate their potential as CARs evaluated by electron-beam, DUV and extreme-UV lithography, obtaining well defined line-space patterns of less than 30 nm half-pitch.","PeriodicalId":212235,"journal":{"name":"Advanced Lithography","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sequence-defined polypeptoid CARs for electron-beam and EUV lithography\",\"authors\":\"F. Käfer, C. Ober, Z. MEng, R. Segalman, Javier Read de Alaniz\",\"doi\":\"10.1117/12.2658413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymeric photoresists are limited in their sensitivity, resolution, and line-edge roughness due in large part to their molar mass distribution and variation in composition of single polymer chains. While most synthetic polymers, have monomer units distributed randomly along the polymer chain, polypeptoids are, however, characterized by low stochastics i.e., identical chains with extremely low chemical, structural, and molar mass variability with a widely adjustable length and composition. In this work we describe the synthesis of 10 repeat-unit polypeptoids designed as a photopolymer and demonstrate their potential as CARs evaluated by electron-beam, DUV and extreme-UV lithography, obtaining well defined line-space patterns of less than 30 nm half-pitch.\",\"PeriodicalId\":212235,\"journal\":{\"name\":\"Advanced Lithography\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Lithography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2658413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2658413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sequence-defined polypeptoid CARs for electron-beam and EUV lithography
Polymeric photoresists are limited in their sensitivity, resolution, and line-edge roughness due in large part to their molar mass distribution and variation in composition of single polymer chains. While most synthetic polymers, have monomer units distributed randomly along the polymer chain, polypeptoids are, however, characterized by low stochastics i.e., identical chains with extremely low chemical, structural, and molar mass variability with a widely adjustable length and composition. In this work we describe the synthesis of 10 repeat-unit polypeptoids designed as a photopolymer and demonstrate their potential as CARs evaluated by electron-beam, DUV and extreme-UV lithography, obtaining well defined line-space patterns of less than 30 nm half-pitch.