医学图像分割与解释中的区域合并

S. Tadikonda, M. Sonka, S. M. Collins
{"title":"医学图像分割与解释中的区域合并","authors":"S. Tadikonda, M. Sonka, S. M. Collins","doi":"10.1109/IEMBS.1993.978479","DOIUrl":null,"url":null,"abstract":"A u t o m a t e d segmentation and interpretation of medical images is o f t en a difficult task due to the complexi ty of the image data. Using cu r ren t reg ion growing segmentation techniques, t h e image is almost always oversegmented or undersegmented because the region growing processes are mostly based on region homogeneity properties. Seman t i c region growing approaches often s t a r t w i t h an oversegmented image and use U priori knowledge to merge regions in objects. We describe here a region merging method that is useful i n o u r s eman t i c genetic image segmenta t ion and in t e rp re t a t ion method.","PeriodicalId":408657,"journal":{"name":"Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Region merging in medical image segmentation and interpretation\",\"authors\":\"S. Tadikonda, M. Sonka, S. M. Collins\",\"doi\":\"10.1109/IEMBS.1993.978479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A u t o m a t e d segmentation and interpretation of medical images is o f t en a difficult task due to the complexi ty of the image data. Using cu r ren t reg ion growing segmentation techniques, t h e image is almost always oversegmented or undersegmented because the region growing processes are mostly based on region homogeneity properties. Seman t i c region growing approaches often s t a r t w i t h an oversegmented image and use U priori knowledge to merge regions in objects. We describe here a region merging method that is useful i n o u r s eman t i c genetic image segmenta t ion and in t e rp re t a t ion method.\",\"PeriodicalId\":408657,\"journal\":{\"name\":\"Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1993.978479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1993.978479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

然而,由于医学图像数据的复杂性,医学图像的分割和解释往往是一项艰巨的任务。使用传统的区域增长分割技术,由于区域增长过程大多基于区域的均匀性,图像几乎总是被过度分割或未被分割。Seman - c区域增长方法通常是对过度分割的图像进行分类,并使用先验知识来合并对象中的区域。本文介绍了一种适用于遗传图像分割和遗传图像分割的区域合并方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Region merging in medical image segmentation and interpretation
A u t o m a t e d segmentation and interpretation of medical images is o f t en a difficult task due to the complexi ty of the image data. Using cu r ren t reg ion growing segmentation techniques, t h e image is almost always oversegmented or undersegmented because the region growing processes are mostly based on region homogeneity properties. Seman t i c region growing approaches often s t a r t w i t h an oversegmented image and use U priori knowledge to merge regions in objects. We describe here a region merging method that is useful i n o u r s eman t i c genetic image segmenta t ion and in t e rp re t a t ion method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relationship between perception threshold and thickness of the dorsal CSF-layer in epidural spinal cord stimulation Simulation of activation and propagation delay during tripolar neural stimulation Calculation of the potential field in nerve stimulation using a multigrid method Fluorinated hydrocarbons as MRI contrast agents Influence of light irradiation an the development of mouse eggs in culture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1